Open Access

Overexpression of ZEB2‑AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia

  • Authors:
    • Xiaolan Shi
    • Jiao Li
    • Liang Ma
    • Lijun Wen
    • Qinrong Wang
    • Hong Yao
    • Changgeng Ruan
    • Depei Wu
    • Xinyou Zhang
    • Suning Chen
  • View Affiliations

  • Published online on: March 15, 2019     https://doi.org/10.3892/ol.2019.10149
  • Pages: 4935-4947
  • Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy with poor clinical outcomes. To determine whether the expression of the long non‑coding (lnc)RNA zinc finger E‑box binding homeobox 2 (ZEB2) antisense RNA 1 (ZEB2‑AS1) is associated with clinical outcomes, its expression was analyzed in a retrospective cohort of 62 AML and 10 non‑malignant cases. The results revealed that the expression of ZEB2‑AS1 lncRNA was notably high and closely associated with adverse clinical outcomes in AML cases compared with the non‑malignant cases, based on either modified Medical Research Council or European Leukemia Net risk stratification systems. Univariate analyses indicated that patients with a higher expression of ZEB2‑AS1 lncRNA had significantly shorter overall survival (OS) (P=0.036) and disease‑free survival (DFS) rates (P=0.039) compared with patients with a lower expression of ZEB2‑AS1 lncRNA. In addition, patients with a higher expression of ZEB2‑AS1 lncRNA had a significant lower complete remission rate in response to induction by chemotherapy compared with patients with a lower expression of ZEB2‑AS1 lncRNA (P=0.031). In cases with low levels of ZEB2‑AS1 lncRNA, patients treated with allogenic hematopoietic stem cell transplantation had significantly longer OS and DFS rates compared with that of chemotherapy‑treated patients (P=0.037 and P=0.049 respectively). Furthermore, the knockdown of ZEB2‑AS1 lncRNA effectively inhibited AML cell invasion and migration, which was closely associated with the downregulation of ZEB2 and upregulation of E‑cadherin expression. Collectively, although its independent prognostic value for survival was not rigorously determined, ZEB2‑AS1 lncRNA may function as a candidate marker to improve conventional risk stratification systems and the evaluation of therapeutic responses for AML.

References

1 

Döhner H, Weisdorf DJ and Bloomfield CD: Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Polednak AP: Recent improvement in completeness of incidence data on acute myeloid leukemia in US cancer registries. J Registry Manag. 41:77–84. 2014.PubMed/NCBI

3 

Tawfik B, Pardee TS, Isom S, Sliesoraitis S, Winter A, Lawrence J, Powell BL and Klepin HD: Comorbidity, age, and mortality among adults treated intensively for acute myeloid leukemia (AML). J Geriatr Oncol. 7:24–31. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Almeida AM and Ramos F: Acute myeloid leukemia in the older adults. Leuk Res Rep. 6:1–7. 2016.PubMed/NCBI

5 

Percival ME, Tao L, Medeiros BC and Clarke CA: Improvements in the early death rate among 9,380 patients with acute myeloid leukemia after initial therapy: A SEER database analysis. Cancer. 121:2004–2012. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Bhatnagar B and Garzon R: The use of molecular genetics to refine prognosis in acute myeloid leukemia. Curr Hematol Malig Rep. 9:148–157. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Stölzel F, Mohr B, Kramer M, Oelschlägel U, Bochtler T, Berdel WE, Kaufmann M, Baldus CD, Schäfer-Eckart K, Stuhlmann R, et al: Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J. 6:e3862016. View Article : Google Scholar : PubMed/NCBI

8 

Mrózek K and Bloomfield CD: Chromosome aberrations, gene mutations and expression changes, and prognosis in adult acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2006:169–177. 2006. View Article : Google Scholar

9 

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al: Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–2221. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Byun JM, Kim YJ, Yoon HJ, Kim SY, Kim HJ, Yoon J, Min YH, Cheong JW, Park J, Lee JH, et al: Cytogenetic profiles of 2,806 patients with acute myeloid leukemia-a retrospective multicenter nationwide study. Ann Hematol. 95:1223–1232. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Li S, Mason CE and Melnick A: Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev. 36:100–106. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Cancer Genome Atlas Research Network, ; Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ Jr, Laird PW, et al: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 368:2059–2074. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, et al: Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 22:792–799. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Sasca D and Huntly BJ: Independence of epigenetic and genetic diversity in AML. Nat Med. 22:708–709. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet 15 Spec No. 1:R17–R29. 2006. View Article : Google Scholar

16 

Morris KV and Mattick JS: The rise of regulatory RNA. Nat Rev Genet. 15:423–437. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Goff LA and Rinn JL: Linking RNA biology to lncRNAs. Genome Res. 25:1456–1465. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ and Calin GA: Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 34:5003–5011. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, Mrózek K, Bucci D, Carroll AJ, Baer MR, et al: Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci USA. 111:18679–18684. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Morlando M, Ballarino M and Fatica A: Long non-coding RNAs: New players in hematopoiesis and leukemia. Front Med (Lausanne). 2:232015.PubMed/NCBI

23 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, Gingeras TR, Kapranov P, Weissman SM and Newburger PE: A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 113:2526–2534. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Xing CY, Hu XQ, Xie FY, Yu ZJ, Li HY, Bin-Zhou, Wu JB, Tang LY and Gao SM: Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett. 589:1981–1987. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Mattick JS and Rinn JL: Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 22:5–7. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Khorkova O, Myers AJ, Hsiao J and Wahlestedt C: Natural antisense transcripts. Hum Mol Genet. 23:R54–R63. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et al: Antisense transcription in the mammalian transcriptome. Science. 309:1564–1566. 2005. View Article : Google Scholar : PubMed/NCBI

30 

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Su WY, Xiong H and Fang JY: Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun. 396:177–181. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Wight M and Werner A: The functions of natural antisense transcripts. Essays Biochem. 54:91–101. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Ebralidze AK, Guibal FC, Steidl U, Zhang P, Lee S, Bartholdy B, Jorda MA, Petkova V, Rosenbauer F, Huang G, et al: PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 22:2085–2092. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Sun J, Li W, Sun Y, Yu D, Wen X, Wang H, Cui J, Wang G, Hoffman AR and Hu JF: A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res. 42:9588–9601. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, Bonilla F and de Herreros AG: A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22:756–769. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, Schneider S, Konstandin NP, Dufour A, Bräundl K, et al: Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 128:686–698. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ and Burnett AK; National Cancer Research Institute Adult Leukaemia Working Group, : Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 116:354–365. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Röllig C, Bornhäuser M, Thiede C, Taube F, Kramer M, Mohr B, Aulitzky W, Bodenstein H, Tischler HJ, Stuhlmann R, et al: Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: Evaluation of the proposed reporting system. J Clin Oncol. 29:2758–2765. 2011. View Article : Google Scholar : PubMed/NCBI

40 

McGowan-Jordan J, Simons A and Schmid M: An International System for Human Cytogenomic Nomenclature (2016). Cytogenetic and Genome Research. 149:1–2. 2016.

41 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Bhan A and Mandal SS: lncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta. 1856:151–164. 2015.PubMed/NCBI

44 

Sun J, Cheng L, Shi H, Zhang Z, Zhao H, Wang Z and Zhou M: A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma. Sci Rep. 6:278422016. View Article : Google Scholar : PubMed/NCBI

45 

Schlenk RF, Dohner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, Habdank M, Späth D, Morgan M, Benner A, et al: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 358:1909–1918. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Xu Y, Sun Y, Shen H, Ding L, Yang Z, Qiu H, Sun A, Chen S and Wu D: Allogeneic hematopoietic stem cell transplantation could improve survival of cytogenetically normal adult acute myeloid leukemia patients with DNMT3A mutations. Am J Hematol. 90:992–997. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Dombret H and Gardin C: An update of current treatments for adult acute myeloid leukemia. Blood. 127:53–61. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Vandewalle C, Van Roy F and Berx G: The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 66:773–787. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Hill L, Browne G and Tulchinsky E: ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer. 132:745–754. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, et al: The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 21:247–257. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Wu Y, Lyu H, Liu H, Shi X, Song Y and Liu B: Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Sci Rep. 6:310932016. View Article : Google Scholar : PubMed/NCBI

53 

Torkildsen S, Gorunova L, Beiske K, Tjonnfjord GE, Heim S and Panagopoulos I: Novel ZEB2-BCL11B fusion gene identified by RNA-sequencing in acute myeloid leukemia with t(2;14)(q22;q32). PLoS One. 10:e01327362015. View Article : Google Scholar : PubMed/NCBI

54 

Schmalhofer O, Brabletz S and Brabletz T: E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Stein EM and Tallman MS: Mixed lineage rearranged leukaemia: Pathogenesis and targeting DOT1L. Curr Opin Hematol. 22:92–96. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shi, X., Li, J., Ma, L., Wen, L., Wang, Q., Yao, H. ... Chen, S. (2019). Overexpression of ZEB2‑AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia. Oncology Letters, 17, 4935-4947. https://doi.org/10.3892/ol.2019.10149
MLA
Shi, X., Li, J., Ma, L., Wen, L., Wang, Q., Yao, H., Ruan, C., Wu, D., Zhang, X., Chen, S."Overexpression of ZEB2‑AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia". Oncology Letters 17.6 (2019): 4935-4947.
Chicago
Shi, X., Li, J., Ma, L., Wen, L., Wang, Q., Yao, H., Ruan, C., Wu, D., Zhang, X., Chen, S."Overexpression of ZEB2‑AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia". Oncology Letters 17, no. 6 (2019): 4935-4947. https://doi.org/10.3892/ol.2019.10149