Open Access

Particle stability and structure on the peritoneal surface in pressurized intra‑peritoneal aerosol chemotherapy (PIPAC) analysed by electron microscopy: First evidence of a new physical concept for PIPAC

  • Authors:
    • Tanja Khosrawipour
    • Justyna Schubert
    • Veria Khosrawipour
    • Haris Chaudhry
    • Jakub Grzesiak
    • Mohamed Arafkas
    • Agata Mikolajczyk
  • View Affiliations

  • Published online on: March 19, 2019     https://doi.org/10.3892/ol.2019.10162
  • Pages: 4921-4927
  • Copyright: © Khosrawipour et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Pressurized intra‑peritoneal aerosol chemotherapy (PIPAC) has been introduced to the clinical setting as a novel approach for the treatment of peritoneal metastasis. The local interaction of chemoaerosol droplets with the peritoneal surface as well as their distribution pattern is considered the main advantage over conventional liquid intraperitoneal chemotherapy. The aim of the present study was to investigate the behavior of these aerosol particles during PIPAC application via electron microscopy. Solutions of doxycycline, liposomal doxorubicin and macrophage cells were aerosolized using an established ex‑vivo model. PIPAC was performed on peritoneum samples via microcatheter (MC) at a pressure of 12 mmHg C02 at 27˚C. Following PIPAC the surface structure of applied particles was measured via electron microscopy.The aerosol particle contact of doxycyclin created a nanofilm of ~200 nm height on the peritoneal surface, and this height was revealed to be independent of the size of the initial particle hitting. These nanofilm blocks of ‘cylinders’ are of different diameters depending on the initial aerosol particle hitting that spot. Diameters of these ‘cylinders’ are far wider than the original diameter of the initial aerosol particle. However, coated particles such as liposomal doxorubicin and macrophages remained intact following contact with the peritoneal surface. Based on this and other data, the concept that aerosol particles exhibit a gas‑like behavior in the abdomen creating a therapeutic capnoperitoneum should be revised. Fluid aerosol particles collide with the peritoneum creating a nanofilm. The interaction of pressurized intraperitoneal aerosol on the peritoneum is therefore closer to the distribution of a liquid film than to that of a gas. Further studies are required to further analyze the interaction of this nanofilm on the peritoneum.

References

1 

Solaß W, Hetzel A, Nadiradze G, Sagynaliev E and Reymond MA: Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc. 26:1849–1855. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Odendahl K, Solass W, Demtröder C, Giger-Pabst U, Zieren J, Tempfer C and Reymond MA: Quality of life of patients with end-stage peritoneal metastasis treated with Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC). Eur J Surg Oncol. 41:1379–1385. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Khosrawipour T, Khosrawipour V and Giger-Pabst U: Pressurized Intra Peritoneal Aerosol Chemotherapy in patients suffering from peritoneal carcinomatosis of pancreatic adenocarcinoma. PLoS One. 12:e01867092017. View Article : Google Scholar : PubMed/NCBI

4 

Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Förster E, Zieren J and Giger-Pabst U: Exploring the spatial drug distribution pattern of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 23:1220–1224. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Khosrawipour V, Khosrawipour T, Falkenstein TA, Diaz-Carballo D, Förster E, Osma A, Adamietz IA, Zieren J and Fakhrian K: Evaluating the effect of micropump© position, internal pressure and doxorubicin dosage on efficacy of pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in an ex vivo model. Anticancer Res. 36:4595–4600. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Khosrawipour V, Giger-Pabst U, Khosrawipour T, Pour YH, Diaz-Carballo D, Förster E, Böse-Ribeiro H, Adamietz IA, Zieren J and Fakhrian K: Effect of irradiation on tissue penetration depth of doxorubicin after pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in a novel ex-vivo model. J Cancer. 7:910–914. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Khosrawipour V, Diaz-Carballo D, Acikelli AH, Khosrawipour T, Falkenstein TA, Wu D, Zieren J and Giger-Pabst U: Erratum to: Cytotoxic effect of different treatment parameters in pressurized intraperitoneal aerosol chemotherapy (PIPAC) on the in vitro proliferation of human colonic cancer cells. World J Surg Oncol. 15:942017. View Article : Google Scholar : PubMed/NCBI

8 

Khosrawipour V, Mikolajczyk A, Schubert J and Khosrawipour T: Pressurized intra-peritoneal aerosol chemotherapy (PIPAC) via endoscopical microcatheter system. Anticancer Res. 38:3447–3452. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Khosrawipour V, Khosrawipour T, Hedayat-Pour Y, Diaz-Carballo D, Bellendorf A, Böse-Riberio H, Mücke R, Mohanaraja N, Adamietz IA and Fakhrian K: Effect of whole-abdominal irradiation on penetration depth of doxorubicin in normal tissue after Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) in a post-mortem swine model. Anticancer Res. 37:1677–1680. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Khosrawipour V, Bellendorf A, Khosrawipour C, Hedayat-Pour Y, Diaz-Carballo D, Förster E, Mücke R, Kabakci B, Adamietz IA and Fakhrian K: Irradiation does not increase the penetration depth of doxorubicin in normal tissue after Pressurized Intra-peritoneal Aerosol Chemotherapy (PIPAC) in an ex vivo model. In Vivo. 30:593–597. 2016.PubMed/NCBI

11 

Mikolajczyk A, Khosrawipour V, Schubert J, Chaudhry H, Pigazzi A and Khosrawipour T: Particle stability during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC). Anticancer Res. 38:4645–4649. 2018. View Article : Google Scholar : PubMed/NCBI

12 

DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P and Jimenez JL: Particle morphology and density characterization by combined mobility and aerodynamic diameter Measurements. Part 1: Theory. Aerosol Sci Technol. 38:1185–1205. 2004. View Article : Google Scholar

13 

Nowacki M, Grzanka D and Zegarski W: Pressurized intraperitoneal aerosol chemotheprapy after misdiagnosed gastric cancer: Case report and review of the literature. World J Gastroenterol. 24:2130–2136. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Nowacki M and Zegarski W: The scientific report from the first pressurized intraperitoneal aerosol chemotherapy (PIPAC) procedures performed in the eastern part of Central Europe. J Int Med Res. 46:3748–3758. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Göhler D, Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Falkenstein TA, Zieren J, Stintz M and Giger-Pabst U: Technical description of the microinjection pump (MIP®) and granulometric characterization of the aerosol applied for pressurized intraperitoneal aerosol chemotherapy (PIPAC). Surg Endosc. 31:1778–1784. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Khosrawipour T, Wu D, Bellendorf A, Mohanaraja N, Karabay E, Diaz-Carballo D and Khosrawipour V: Feasibility of single tumorspot treatment in peritoneal carcinomatosis via close range doxorubicin impaction in pressurized intra-peritoneal aerosol chemotherapy (PIPAC). J Clin Exp Oncol. 6:2017. View Article : Google Scholar

17 

Kakchekeeva T, Demtröder C, Herath NI, Griffiths D, Torkington J, Solaß W, Dutreix M and Reymond MA: In vivo feasibility of electrostatic precipitation as an adjunct to pressurized intraperitoneal aerosol chemotherapy (ePIPAC). Ann Surg Oncol. 23 (Suppl 5):S592–S598. 2016. View Article : Google Scholar

18 

Göhler D, Große S, Bellendorf A, Falkenstein TA, Ouaissi M, Zieren J, Stintz M and Giger-Pabst U: Hyperthermic intracavitary nanoaerosol therapy (HINAT) as an improved approach for pressurised intraperitoneal aerosol chemotherapy (PIPAC): Technical description, experimental validation and first proof of concept. Beilstein J Nanotechnol. 8:2729–2740. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Elias DM and Sideris L: Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 12755–769. (xiv)2003. View Article : Google Scholar : PubMed/NCBI

20 

Tempfer CB, Giger-Pabst U, Seebacher V, Petersen M, Dogan A and Rezniczek GA: A phase I, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis. Gynecol Oncol. 150:23–30. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Khosrawipour, T., Schubert, J., Khosrawipour, V., Chaudhry, H., Grzesiak, J., Arafkas, M., & Mikolajczyk, A. (2019). Particle stability and structure on the peritoneal surface in pressurized intra‑peritoneal aerosol chemotherapy (PIPAC) analysed by electron microscopy: First evidence of a new physical concept for PIPAC. Oncology Letters, 17, 4921-4927. https://doi.org/10.3892/ol.2019.10162
MLA
Khosrawipour, T., Schubert, J., Khosrawipour, V., Chaudhry, H., Grzesiak, J., Arafkas, M., Mikolajczyk, A."Particle stability and structure on the peritoneal surface in pressurized intra‑peritoneal aerosol chemotherapy (PIPAC) analysed by electron microscopy: First evidence of a new physical concept for PIPAC". Oncology Letters 17.6 (2019): 4921-4927.
Chicago
Khosrawipour, T., Schubert, J., Khosrawipour, V., Chaudhry, H., Grzesiak, J., Arafkas, M., Mikolajczyk, A."Particle stability and structure on the peritoneal surface in pressurized intra‑peritoneal aerosol chemotherapy (PIPAC) analysed by electron microscopy: First evidence of a new physical concept for PIPAC". Oncology Letters 17, no. 6 (2019): 4921-4927. https://doi.org/10.3892/ol.2019.10162