Open Access

Tumor growth under rhGM‑CSF application in an orthotopic rodent glioma model

  • Authors:
    • Thomas Linsenmann
    • Anna Jawork
    • Thomas Westermaier
    • György Homola
    • Camelia Maria Monoranu
    • Giles Hamilton Vince
    • Almuth Friederike Kessler
    • Ralf‑Ingo Ernestus
    • Mario Löhr
  • View Affiliations

  • Published online on: March 21, 2019     https://doi.org/10.3892/ol.2019.10179
  • Pages: 4843-4850
  • Copyright: © Linsenmann et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Regulation of the host immune response serves a pivotal role in the persistence and progression of malignant glioma. To date, cytotoxic cluster of differentiation (CD)‑8+ T and natural killer cells are considered the main cellular components of host tumor control. The influence of macrophages in an orthotropic C6 tumor implantation model was investigated and the aim of the present study was to characterize the effects of systemic macrophage‑activation on glioma growth by using the granulocyte macrophage colony stimulating factor (rhGM‑CSF). A total of 20 male Sprague‑Dawley rats were orthotopically implanted with C6 glioma spheroids and treated subcutaneously with 10 µg/kg rhGM‑CSF every other day; 9 animals served as controls. Serial magnetic resonance imaging was performed on days 7, 14, 21, 28, 32 and 42 post‑implantation to monitor tumor volume. Histological work‑up included hematoxylin and eosin, CD68/ED‑1 macrophage, CD8 T‑cell and Ki‑67 MIB1 proliferation staining in gliomas and spleen. Experimental C6‑gliomas developed in 15/20 (75%) animals. In rhGM‑CSF treated rats, tumors developed significantly later and reached a smaller size (median, 134 mm³) compared with the controls (median, 262 mm³). On day 14, solid tumors presented in 11/17 (65%) rhGM‑CSF‑treated animals; in control animals tumor growth was detected in 3/9 animals on day 7 and in all animals on day 14. The mean survival time was 35 days in the rhGM‑CSF group and significantly longer when compared with the control group (24 days). Immunohistochemistry exhibited significantly more macrophages in tumors, particularly in the perivascular zone of the rhGM‑CSF group when compared with untreated animals; intratumoral CD8+ counts were equal in both groups. A systemic stimulation of macrophages by rhGM‑CSF resulted in significantly reduced and delayed tumor growth in the rodent C6 glioma model. The present data suggested a significant role of macrophages in host control of experimental gliomas on the innate immune response. Until now, the role of macrophages may have been underestimated in host glioma control.

References

1 

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al: Structural and functional features of central nervous system lymphatic vessels. Nature. 523:337–341. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, Brylla E, Issekutz T, Cabañas C, Nelson PJ, et al: Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 530:349–353. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Ratnam NM, Gilbert MR and Giles AJ: Immunotherapy in CNS cancers: The role of immune cell trafficking. Neuro Oncol. 21:37–46. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Bowles AP Jr and Perkins E: Long-term remission of malignant brain tumors after intracranial infection: A report of four cases. Neurosurgery. 44:636–643. 1999. View Article : Google Scholar : PubMed/NCBI

6 

Kapp JP: Microorganisms as antineoplastic agents in CNS tumors. Arch Neurol. 40:637–642. 1983. View Article : Google Scholar : PubMed/NCBI

7 

Margolis J and West D: Spontaneous regression of malignant disease: Report of three cases. J Am Geriatr Soc. 15:251–253. 1967. View Article : Google Scholar : PubMed/NCBI

8 

Naganuma H, Sasaki A, Satoh E, Nagasaka M, Isoe S, Nakano S and Nukui H: Long-term survival in a young patient with anaplastic glioma. Brain Tumor Pathol. 14:71–74. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Walker DG and Pamphlett R: Prolonged survival and pulmonary metastases after local cure of glioblastoma multiforme. J Clin Neurosci. 6:67–68. 1999. View Article : Google Scholar : PubMed/NCBI

10 

De Bonis P, Albanese A, Lofrese G, de Waure C, Mangiola A, Pettorini BL, Pompucci A, Balducci M, Fiorentino A, Lauriola L, et al: Postoperative infection may influence survival in patients with glioblastoma: Simply a myth? Neurosurgery. 69:864–869. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Bohman LE, Gallardo J, Hankinson TC, Waziri AE, Mandigo CE, McKhann GM II, Sisti MB, Canoll P and Bruce JN: The survival impact of postoperative infection in patients with glioblastoma multiforme. Neurosurgery. 64:828–835. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Platten M, Bunse L, Wick W and Bunse T: Concepts in glioma immunotherapy. Cancer Immunol Immunother. 65:1269–1275. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Löhr M, Molcanyi M, Poggenborg J, Spuentrup E, Runge M, Röhn G, Härtig W, Hescheler J and Hampl JA: Intracerebral administration of heat-inactivated Staphylococcus epidermidis enhances oncolysis and prolongs survival in a 9L orthotopic gliosarcoma model. Cell Physiol Biochem. 31:614–624. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Thomas AA, Brennan CW, DeAngelis LM and Omuro AM: Emerging therapies for glioblastoma. JAMA Neurol. 71:1437–1444. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Vince GH, Bendszus M, Schweitzer T, Goldbrunner RH, Hildebrandt S, Tilgner J, Klein R, Solymosi L, Christian Tonn J and Roosen K: Spontaneous regression of experimental gliomas-an immunohistochemical and MRI study of the C6 glioma spheroid implantation model. Exp Neurol. 190:478–485. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Goldbrunner RH, Bernstein JJ, Plate KH, Vince GH, Roosen K and Tonn JC: Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. J Neurosci Res. 55:486–495. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Grobben B, De Deyn PP and Slegers H: Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 310:257–270. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Benda P, Lightbody J, Sato G, Levine L and Sweet W: Differentiated rat glial cell strain in tissue culture. Science. 161:370–371. 1968. View Article : Google Scholar : PubMed/NCBI

19 

Nagano N, Sasaki H, Aoyagi M and Hirakawa K: Invasion of experimental rat brain tumor: Early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol. 86:117–125. 1993. View Article : Google Scholar : PubMed/NCBI

20 

Whittle IR, MacArthur DC, Malcom GP, Li M, Washington K and Ironside JW: Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumours. J Neurooncol. 36:231–242. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Chicoine MR and Silbergeld DL: Invading C6 glioma cells maintaining tumorigenicity. J Neurosurg. 83:665–671. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Parsa AT, Chakrabarti I, Hurley PT, Chi JH, Hall JS, Kaiser MG and Bruce JN: Limitations of the C6/Wistar rat intracerebral glioma model: Implications for evaluating immunotherapy. Neurosurgery. 47:993–1000. 2000. View Article : Google Scholar : PubMed/NCBI

23 

Badie B and Schartner J: Role of microglia in glioma biology. Microsc Res Tech. 54:106–113. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Roggendorf W, Strupp S and Paulus W: Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol. 92:288–293. 1996. View Article : Google Scholar : PubMed/NCBI

25 

Badie B and Schartner JM: Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 46:957–962. 2000. View Article : Google Scholar : PubMed/NCBI

26 

da Fonseca AC and Badie B: Microglia and macrophages in malignant gliomas: Recent discoveries and implications for promising therapies. Clin Dev Immunol. 2013:2641242013.PubMed/NCBI

27 

Coniglio SJ and Segall JE: Review: Molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol. 32:372–380. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Wagner S, Czub S, Greif M, Vince GH, Süss N, Kerkau S, Rieckmann P, Roggendorf W, Roosen K and Tonn JC: Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer. 82:12–16. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW and ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA. 88:7438–7442. 1991. View Article : Google Scholar : PubMed/NCBI

30 

Yang I, Han SJ, Kaur G, Crane C and Parsa AT: The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci. 17:6–10. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Czarniecki CW, Chiu HH, Wong GH, McCabe SM and Palladino MA: Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J Immunol. 40:4217–4223. 1988.

32 

Charles NA, Holland EC, Gilbertson R, Glass R and Kettenmann H: The brain tumor microenvironment. Glia. 59:1169–1180. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Watters JJ, Schartner JM and Badie B: Microglia function in brain tumors. J Neurosci Res. 81:447–455. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Badie B, Bartley B and Schartner J: Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol. 133:39–45. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Hambardzumyan D, Gutmann DH and Kettenmann H: The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 19:20–27. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L, Braczynski AK, Weissenberger J, Bratzke H, Reiß S, et al: MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. 25:491–504. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Galarneau H, Villeneuve J, Gowing G, Julien JP and Vallières L: Increased glioma growth in mice depleted of macrophages. Cancer Res. 67:8874–8881. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Villeneuve J, Tremblay P and Vallières L: Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res. 65:3928–3936. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Komohara Y, Ohnishi K, Kuratsu J and Takeya M: Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 216:15–24. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Wei J, Gabrusiewicz K and Heimberger A: The controversial role of microglia in malignant gliomas. Clin Dev Immunol. 2013:2852462013. View Article : Google Scholar : PubMed/NCBI

41 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Alterman RL and Stanley ER: Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol. 21:177–188. 1994. View Article : Google Scholar : PubMed/NCBI

43 

Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M and Kaminska B: Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One. 6:e239022011. View Article : Google Scholar : PubMed/NCBI

44 

Fischer HG and Reichmann G: Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 166:2717–2726. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Badie B, Schartner J, Prabakaran S, Paul J and Vorpahl J: Expression of Fas ligand by microglia: Possible role in glioma immune evasion. J Neuroimmunol. 120:19–24. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R and Heimberger AB: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12:1113–1125. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Kennedy BC, Maier LM, D'Amico R, Mandigo CE, Fontana EJ, Waziri A, Assanah MC, Canoll P, Anderson RC, Anderson DE and Bruce JN: Dynamics of central and peripheral immunomodulation in a murine glioma model. BMC Immunol. 10:112009. View Article : Google Scholar : PubMed/NCBI

48 

Sielska M, Przanowski P, Wylot B, Gabrusiewicz K, Maleszewska M, Kijewska M, Zawadzka M, Kucharska J, Vinnakota K, Kettenmann H, et al: Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J Pathol. 230:310–321. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Grabstein KH, Urdal DL, Tushinski RJ, Mochizuki DY, Price VL, Cantrell MA, Gillis S and Conlon PJ: Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 232:506–508. 1986. View Article : Google Scholar : PubMed/NCBI

50 

Serafini P, Carbley R, Noonan KA, Tan G, Bronte V and Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64:6337–6343. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Rapoport AP, Abboud CN and DiPersio JF: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony- stimulating factor (G-CSF): Receptor biology, signal transduction, and neutrophil activation. Blood Rev. 6:43–57. 1992. View Article : Google Scholar : PubMed/NCBI

52 

Gliniak BC and Rohrschneider LR: Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF. Cell. 63:1073–1083. 1990. View Article : Google Scholar : PubMed/NCBI

53 

McLay RN, Kimura M, Banks WA and Kastin AJ: Granulocyte-macrophage colony-stimulating factor crosses the blood-brain and blood-spinal cord barriers. Brain. 120:2083–2091. 1997. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Linsenmann, T., Jawork, A., Westermaier, T., Homola, G., Monoranu, C.M., Vince, G.H. ... Löhr, M. (2019). Tumor growth under rhGM‑CSF application in an orthotopic rodent glioma model. Oncology Letters, 17, 4843-4850. https://doi.org/10.3892/ol.2019.10179
MLA
Linsenmann, T., Jawork, A., Westermaier, T., Homola, G., Monoranu, C. M., Vince, G. H., Kessler, A. F., Ernestus, R., Löhr, M."Tumor growth under rhGM‑CSF application in an orthotopic rodent glioma model". Oncology Letters 17.6 (2019): 4843-4850.
Chicago
Linsenmann, T., Jawork, A., Westermaier, T., Homola, G., Monoranu, C. M., Vince, G. H., Kessler, A. F., Ernestus, R., Löhr, M."Tumor growth under rhGM‑CSF application in an orthotopic rodent glioma model". Oncology Letters 17, no. 6 (2019): 4843-4850. https://doi.org/10.3892/ol.2019.10179