Open Access

CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model

  • Authors:
    • Keisuke Kawashima
    • Chiemi Saigo
    • Yusuke Kito
    • Yuki Hanamatsu
    • Yuki Egawa
    • Tamotsu Takeuchi
  • View Affiliations

  • Published online on: March 19, 2019     https://doi.org/10.3892/ol.2019.10164
  • Pages: 4811-4818
  • Copyright: © Kawashima et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cluster of differentiation 151 (CD151) is a potent therapeutic target for regulating tumor metastasis. In the present study, the role of CD151 in clear cell sarcoma of soft tissue was examined using a xenoplanted tumor model, which had high rates of metastasis. A clear cell sarcoma cell line, HS‑MM, which was transplanted to the aponeuroses of the thighs, the most affected sites of human clear cell sarcoma, exhibited robust lymphatic invasion and nodal metastasis in SCID‑beige mice. Serial in vivo passaging of peritoneally disseminated tumor cells accelerated the metastatic activity, which was accompanied by increased CD151 expression, and were designated as HS‑MMhigh. Notably, inoculation of anti‑CD151 antibody significantly suppressed the lymphatic invasion, peritoneal dissemination and distant metastasis of the present clear cell sarcoma model without affecting local tumor growth at the transplantation site. Small interfering RNA (siRNA)‑mediated downregulation of CD151 did not alter cell proliferation, but significantly inhibited Matrigel invasion activity of HS‑MMhigh cells. Downregulation of CD151 impaired matrix metalloproteinase‑9 activity and phosphorylation of SMAD3 protein in HS‑MMhigh cells. The present results suggest that CD151 may contribute to invasion and metastasis of clear cell sarcoma of soft tissue. Therefore, CD151 may serve as a potent target to regulate metastasis of clear cell sarcoma.

References

1 

Romanska HM and Berditchevski F: Tetraspanins in human epithelial malignancies. J Pathol. 223:4–14. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Zöller M: Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 9:40–55. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Yu Y, Liang C, Wang S, Zhu J, Miao C, Hua Y, Bao M, Cao Q, Qin C, Shao P and Wang Z: CD151 promotes cell metastasis via activating TGF-β1/Smad signaling in renal cell carcinoma. Oncotarget. 9:13313–13323. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Wang Z, Wang C, Zhou Z, Sun M, Zhou C, Chen J, Yin F, Wang H, Lin B, Zuo D, et al: CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget. 7:60623–60638. 2016.PubMed/NCBI

5 

Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, Cai JB, Huang XY, Wu C, Zhang L, et al: Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget. 7:6314–6322. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Palmer TD, Martínez CH, Vasquez C, Hebron KE, Jones-Paris C, Arnold SA, Chan SM, Chalasani V, Gomez-Lemus JA, Williams AK, et al: Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res. 74:173–187. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Zeng P, Wang YH, Si M, Gu JH, Li P, Lu PH and Chen MB: Tetraspanin CD151 as an emerging potential poor prognostic factor across solid tumors: A systematic review and meta-analysis. Oncotarget. 8:5592–5602. 2017.PubMed/NCBI

8 

Enzinger FM: Clear-cell sarcoma of tendons and aponeuroses. An analysis of 21 cases. Cancer. 18:1163–1174. 1965. View Article : Google Scholar : PubMed/NCBI

9 

Chung EB and Enzinger FM: Malignant melanoma of soft parts. A reassessment of clear cell sarcoma. Am J Surg Pathol. 7:405–413. 1983. View Article : Google Scholar : PubMed/NCBI

10 

Andreou D and Tunn PU: Sentinel node biopsy in soft tissue sarcoma. Recent Results Cancer Res. 179:25–36. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Andreou D, Boldt H, Werner M, Hamann C, Pink D and Tunn PU: Sentinel node biopsy in soft tissue sarcoma subtypes with a high propensity for regional lymphatic spread-results of a large prospective trial. Ann Oncol. 24:1400–1405. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Mavrogenis A, Bianchi G, Stavropoulos N, Papagelopoulos P and Ruggieri P: Clinicopathological features, diagnosis and treatment of clear cell sarcoma/melanoma of soft parts. Hippokratia. 17:298–302. 2013.PubMed/NCBI

13 

Egawa Y, Saigo C, Kito Y, Moriki T and Takeuchi T: Therapeutic potential of CPI-613 for targeting tumorous mitochondrial energy metabolism and inhibiting autophagy in clear cell sarcoma. PLoS One. 13:e01989402018. View Article : Google Scholar : PubMed/NCBI

14 

Testa JE, Brooks PC, Lin JM and Quigley JP: Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res. 59:3812–3820. 1999.PubMed/NCBI

15 

Sonobe H, Furihata M, Iwata J, Ohtsuki Y, Mizobuchi H, Yamamoto H and Kumano O: Establishment and characterization of a new human clear-cell sarcoma cell-line, HS-MM. J Pathol. 169:317–322. 1993. View Article : Google Scholar : PubMed/NCBI

16 

Sonobe H, Takeuchi T, Taguchi T, Shimizu K, Iwata J, Furihata M and Ohtsuki Y: Further characterization of the human clear cell sarcoma cell line HS-MM demonstrating a specific t(12;22)(q13;q12) translocation and hybrid EWSR1/ATF-1 transcript. J Pahol. 187:594–597. 1999.

17 

Takeuchi T, Kuro-o M, Miyazawa H, Ohtsuki Y and Yamamoto H: Transgenic expression of a novel thymic epithelial cell antigen stimulates abberant development of thymocytes. J Immunol. 159:726–733. 1997.PubMed/NCBI

18 

Takeuchi T, Adachi Y, Sonobe H, Furihata M and Ohtsuki Y: A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion. Oncogene. 25:7059–7069. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Towbin H, Staehelin T and Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA. 76:4350–4354. 1979. View Article : Google Scholar : PubMed/NCBI

20 

Kito Y, Saigo C and Takeuchi T: Novel transgenic mouse model of polycystic kidney disease. Am J Pathol. 187:1916–1922. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Morikawa A, Takeuchi T, Kito Y, Saigo C, Sakuratani T, Futamura M and Yoshida K: Expression of beclin-1 in the microenvironment of invasive ductal carcinoma of the breast: Correlation with prognosis and the cancer-stromal interaction. PLoS One. 10:e01257622015. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Takeuchi T, Adachi Y and Nagayama T: A WWOX-binding molecule, transmembrane protein 207, is related to the invasiveness of gastric signet-ring cell carcinoma. Carcinogenesis. 33:548–554. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N and Sonobe H: Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem. 74:1489–1497. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Heussen C and Dowdle EB: Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 102:196–202. 1980. View Article : Google Scholar : PubMed/NCBI

26 

Hong IK, Jin YJ, Byun HJ, Jeoung DI, Kim YM and Lee H: Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem. 281:24279–24292. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Z, Wang F, Li Q, Zhang H, Cui Y, Ma C, Zhu J, Gu X and Sun Z: CD151 knockdown inhibits osteosarcoma metastasis through the GSK-3β/β-catenin/MMP9 pathway. Oncol Rep. 35:1764–1770. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, et al: CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology. 52:183–196. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Li P, Zeng H, Qin J, Zou Y, Peng D, Zuo H and Liu Z: Effects of tetraspanin CD151 inhibition on A549 human lung adenocarcinoma cells. Mol Med Rep. 11:1258–1265. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mii Y, Miyauchi Y, Hohnoki K, Maruyama H, Tsutsumi M, Dohmae K, Tamai S, Konishi Y and Yamanouchi T: Neural crest origin of clear cell sarcoma of tendons and aponeuroses. Ultrastructural and enzyme cytochemical study of human and nude mouse-transplanted tumours. Virchows Arch A Pathol Anat Histopathol. 415:51–60. 1989. View Article : Google Scholar : PubMed/NCBI

31 

Yamada K, Ohno T, Aoki H, Semi K, Watanabe A, Moritake H, Shiozawa S, Kunisada T, Kobayashi Y, Toguchida J, et al: EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice. J Clin Invest. 123:600–610. 2013.PubMed/NCBI

32 

Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, Fletchers CD, Aurias A and Thomas G: EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 4:341–345. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, Du J, Fletcher JA, Denny CT, Lessnick SL, et al: Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell. 9:473–484. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Antoniou G, Lee ATJ, Huang PH and Jones RL: Olaratumab in soft tissue sarcoma-Current status and future perspectives. Eur J Cancer. 92:33–39. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Kohno M, Hasegawa H, Miyake M, Yamamoto T and Fujita S: CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer. 97:336–343. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kawashima, K., Saigo, C., Kito, Y., Hanamatsu, Y., Egawa, Y., & Takeuchi, T. (2019). CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model. Oncology Letters, 17, 4811-4818. https://doi.org/10.3892/ol.2019.10164
MLA
Kawashima, K., Saigo, C., Kito, Y., Hanamatsu, Y., Egawa, Y., Takeuchi, T."CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model". Oncology Letters 17.6 (2019): 4811-4818.
Chicago
Kawashima, K., Saigo, C., Kito, Y., Hanamatsu, Y., Egawa, Y., Takeuchi, T."CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model". Oncology Letters 17, no. 6 (2019): 4811-4818. https://doi.org/10.3892/ol.2019.10164