Open Access

Differential expression profiles of the transcriptome in bone marrow‑derived cells in lung cancer revealed by next generation sequencing and bioinformatics

  • Authors:
    • Wei‑An Chang
    • Ying‑Ming Tsai
    • Yu‑Chen Tsai
    • Cheng‑Ying Wu
    • Kuo‑Feng Chang
    • Chi‑Tun Lien
    • Jen‑Yu Hung
    • Ya‑Ling Hsu
    • Po‑Lin Kuo
  • View Affiliations

  • Published online on: February 28, 2019     https://doi.org/10.3892/ol.2019.10085
  • Pages: 4341-4350
  • Copyright: © Chang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

A pre‑metastatic niche (PMN) facilitates cancer metastasis through mobilization and recruitment of bone marrow‑derived cells (BMDCs) and associated factors. In bone marrow, hematogenous cells, including osteoclasts, macrophages and lymphocytes, and mesenchymal cells, including mesenchymal stem cells, osteoblasts and adipocytes, are involved in PMN formation. Patients with lung cancer and metastasis have a poor prognosis and shortened median survival time. Bone marrow has been considered fertile ground for dormant and proliferating tumor cells, and mobilizing and recruiting BMDCs and immune cells can establish a PMN. However, the role of BMDCs in PMN formation is not yet fully understood. The present study aimed to investigate the association between BMDCs and PMN in bone marrow tissue samples. The results demonstrated that bone marrow served an important role in lung cancer progression and that eight pathways were potentially involved, including ‘T‑cell receptor signaling pathway’, ‘osteoclast differentiation’, ‘MAPK signaling pathway’, ‘VEGF signaling pathway’, ‘leukocyte transendothelial migration’, ‘signaling pathways regulating the pluripotency of stem cells’, ‘oxytocin signaling pathway’ and ‘cell adhesion molecules (CAMs)’. In addition, the present study investigated the role of BMDCs in facilitating lung cancer metastasis. In conclusion, the results from the present study suggested that molecular alterations in gene expression may provide a novel signature in lung cancer, which may aid in the development of novel diagnostic and therapeutic strategies for patients with lung cancer and bone metastasis.

References

1 

Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J and Hemminki K: Metastatic sites and survival in lung cancer. Lung Cancer. 86:78–84. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 12:6243s–6249s. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Kaplan RN, Psaila B and Lyden D: Bone marrow cells in the ‘pre-metastatic niche’: Within bone and beyond. Cancer Metastasis Rev. 25:521–529. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Roato I: Bone metastases: When and how lung cancer interacts with bone. World J Clin Oncol. 5:149–155. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Bergfeld SA and DeClerck YA: Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 29:249–261. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Rutkowski MR, Svoronos N, Perales-Puchalt A and Conejo-Garcia JR: The tumor macroenvironment: Cancer-promoting networks beyond tumor beds. Adv Cancer Res. 128:235–262. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Liu Y and Cao X: Characteristics and significance of the pre-metastatic niche. Cancer Cell. 30:668–681. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Liu X and Quan N: Immune cell isolation from mouse femur bone marrow. Bio Protoc. 5:e16312015. View Article : Google Scholar : PubMed/NCBI

11 

Sheu CC, Tsai MJ, Chen FW, Chang KF, Chang WA, Chong IW, Kuo PL and Hsu YL: Identification of novel genetic regulations associated with airway epithelial homeostasis using next-generation sequencing data and bioinformatics approaches. Oncotarget. 8:82674–82688. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Chen SC, Chen FW, Hsu YL and Kuo PL: Systematic analysis of transcriptomic profile of renal cell carcinoma under long-term hypoxia using next-generation sequencing and bioinformatics. Int J Mol Sci. 18:E26572017. View Article : Google Scholar : PubMed/NCBI

13 

Bolger AM, Lohse M and Usadel B: Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Friedlander MR, Mackowiak SD, Li N, Chen W and Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40:37–52. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 7:562–578. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Vejnar CE and Zdobnov EM: MiRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 40:11673–11683. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Brownlie RJ and Zamoyska R: T cell receptor signalling networks: Branched, diversified and bounded. Nat Rev Immunol. 13:257–269. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Huse M: The T-cell-receptor signaling network. J Cell Sci. 122:1269–1273. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Niyongere S, Saltos A and Gray JE: Immunotherapy combination strategies (non-chemotherapy) in non-small cell lung cancer. J Thorac Dis. 10:S433–S450. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Reungwetwattana T and Dy GK: Targeted therapies in development for non-small cell lung cancer. J Carcinog. 12:222013. View Article : Google Scholar : PubMed/NCBI

21 

Zhu ZJ and He JK: TINCR facilitates non-small cell lung cancer progression through BRAF-activated MAPK pathway. Biochem Biophys Res Commun. 497:971–977. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Burotto M, Chiou VL, Lee JM and Kohn EC: The MAPK pathway across different malignancies: A new perspective. Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Rao Pariti RK, Batakis P and Wiechec E: Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 35:747–759. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Schneider JG, Amend SR and Weilbaecher KN: Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 48:54–65. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Schwankhaus N, Gathmann C, Wicklein D, Riecken K, Schumacher U and Valentiner U: Cell adhesion molecules in metastatic neuroblastoma models. Clin Exp Metastasis. 31:483–496. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Ihn HJ, Kim JA, Bae YC, Shin HI, Baek MC and Park EK: Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways. BMB Rep. 50:150–155. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Niu G and Chen X: Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 11:1000–1017. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Jin GH, Xu W, Shi Y and Wang LB: Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes. Oncol Lett. 12:2345–2350. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ and Mongan NP: Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 18:1093–1108. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Cassoni P, Sapino A, Marrocco T, Chini B and Bussolati G: Oxytocin and oxytocin receptors in cancer cells and proliferation. J Neuroendocrinol. 16:362–364. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2019
Volume 17 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chang, W., Tsai, Y., Tsai, Y., Wu, C., Chang, K., Lien, C. ... Kuo, P. (2019). Differential expression profiles of the transcriptome in bone marrow‑derived cells in lung cancer revealed by next generation sequencing and bioinformatics. Oncology Letters, 17, 4341-4350. https://doi.org/10.3892/ol.2019.10085
MLA
Chang, W., Tsai, Y., Tsai, Y., Wu, C., Chang, K., Lien, C., Hung, J., Hsu, Y., Kuo, P."Differential expression profiles of the transcriptome in bone marrow‑derived cells in lung cancer revealed by next generation sequencing and bioinformatics". Oncology Letters 17.5 (2019): 4341-4350.
Chicago
Chang, W., Tsai, Y., Tsai, Y., Wu, C., Chang, K., Lien, C., Hung, J., Hsu, Y., Kuo, P."Differential expression profiles of the transcriptome in bone marrow‑derived cells in lung cancer revealed by next generation sequencing and bioinformatics". Oncology Letters 17, no. 5 (2019): 4341-4350. https://doi.org/10.3892/ol.2019.10085