MicroRNA-125b expression in gastric adenocarcinoma and its effect on the proliferation of gastric cancer cells

ZHAO-XU YANG1*, CHENG-YI LU2*, YAN-LING YANG1, KE-FENG DOU1 and KAI-SHAN TAO1

1Department of Hepatobiliary Surgery, Xijing Hospital of the Fourth Military Medical University, Xi’an 710032; 2Department of Information, Tangdu Hospital of the Fourth Military Medical University, Xi’an 710038, P.R. China

Received August 29, 2012; Accepted October 17, 2012

DOI: 10.3892/mmr.2012.1156

Abstract. MicroRNAs exert regulatory effects on a number of genes, thereby contributing to both physiological and pathological processes. The functions of microRNAs in tumorigenesis are becoming increasingly clear. In the present study, we investigated the role of microRNA-125b (miR-125b), previously implicated in prostate and breast cancer, in gastric cancer, particularly regarding proliferation and apoptosis of gastric cancer cells. The expression of miR-125b was measured in 50 samples of gastric cancer tissues and corresponding para-cancerous tissues by real-time PCR. The levels of miR-125b expression in the gastric cancer tissues were significantly higher compared to the adjacent normal tissues (P<0.05). To begin to understand how the increased expression of miR-125b may promote gastric cancer, the miR-125b mimic was transfected into the gastric cancer cell line, HGC-27, for the determination of proliferation (CCK8) and apoptosis (Annexin V) by flow cytometry. The results demonstrated that the proliferation significantly increased and apoptosis significantly decreased in the HGC-27 cells following transfection with the miR-125b mimic, compared to the untreated and scramble-treated controls (P<0.05). Thus, miR-125b may act as an oncogene in gastric cancer by dysregulating gastric cell proliferation and apoptosis.

Introduction

MicroRNAs (miRNAs) are a very important regulatory RNA molecules that influence gene function by inhibiting translation or inducing the degradation of target mRNA (1). Importantly, expression imbalances caused by miRNA regulation can contribute to the pathogenesis of various tumors (2). For example, miR-21 has been implicated in breast, colon, prostate and thyroid cancers, among others (2). The potent effect of miRNAs on disease processes indicates a need for studying their expression and function, with the aim of establishing a solid foundation for the clinical treatment of tumors (3-5).

Another miRNA, miR-125b, has been shown to exhibit abnormal expression in a variety of tumor tissues; however, its effects are not consistent across tissue types (2). In prostate cancer, the high expression of miR-125b can promote tumor proliferation (9), but, in breast cancer, miR‑125b can significantly inhibit tumor proliferation (10). A certain study found that this miRNA exhibited altered expression in gastric cancer according to disease progression (11). However, no other reports on miR-125b expression and its effect on gastric cancer have been identified.

Gastric cancer occurs with high incidence in Asian populations and thus has been an important focus of cancer research (12). In this study, real-time PCR was used to detect miR-125b expression in 50 cases of gastric cancer tissues and corresponding adjacent normal tissues. To determine the effect of miR-125b on the proliferation and apoptosis of gastric cancer cells, the miR-125b mimic was transfected into the gastric cancer cell line, HGC-27. Our results reveal the potential functions of miR-125b in gastric cancer and may pave the way for its application in clinical diagnosis and treatment.

Materials and methods

Specimens. Specimens of both gastric carcinoma tissues and corresponding adjacent normal tissues (>5 cm away from cancer tissues) were collected from 50 patients who received surgical resection of gastric cancer from January 2010 to December 2011 in Xijing Hospital, the Fourth Military Medical University, Xi’an, China. Gastric cancer diagnoses were confirmed by post-operative pathological biopsy. No patients had received pre-operative radiotherapy, chemotherapy or endocrine therapy. The age range of the patients was 32-70 years and the mean age was 53.9±9.6 years. During surgery, the cancer and adjacent normal tissues were cut, 100 mg of which were washed with 1X PBS, placed in cryovials and kept in a refrigerator at -80˚C.

Cell culture and transfection. The HGC-27 human gastric cancer cells were provided by the Cell Bank of the Shanghai Institute of Cell Biology (Chinese Academy of Sciences,
miR-125b-antisense primer, 5'-ACGCTTCACGAATTTGCGTGTC-3'.

sense primer, 5'-CTCGCTTCGGCAGCACATATACT-3'; U6 primer, 5'-AAAATATGGAACGCTTCACGAATTTG-3'; U6 antisense primer, 5'-GTGCAGGGTCCGAGGT-3'; U6 RT primer, 5'-GCACTGGATACGACTCACAAG-3'; Hsa-miR-125b-sense primer, 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTC.

The cDNA was synthesized by stem-loop primer reverse transcription reaction (Promega Corp., Madison, WI, USA). The real-time quantitative PCR kit (Takara Bio., Inc., Shiga, Japan) was used to facilitate the reactions. Reactions were performed under the following thermal cycling conditions: 94°C for 20 sec; and 40 cycles of 94°C for 30 sec, 60°C for 45 sec. Samples were amplified in triplicate and reactions were performed on a Bio-Rad IQ5 PCR instrument (Bio-Rad, Hercules, CA, USA) which was also used to analyze the results.

Statistical analysis. SPSS17.0 statistical software was applied to statistical analysis. Measurement data are expressed as the means ± standard deviation (SD). A two-independent-sample t-test was used to compare the miR-125b expression between the groups. The above analyses were performed with two-sided tests, with a test level (α) of 0.05 and P<0.05 was considered to indicate a statistically significant difference.

Results

MiR-125b expression in gastric cancer and adjacent non-cancerous tissues. As shown by real-time PCR, the relative mean miR-125b expression level was 18.94±5.96 in the gastric cancer tissues and 8.20±2.91 in the adjacent normal tissues (Fig. 1). This difference was statistically significant (t=11.452, P<0.001).

Effect of miR-125b overexpression on HGC-27 cell proliferation. The miR-125b expression level was detected at 1192.00±109.77 in the HGC-27 cells transfected with miR-125b mimic, a significant increase of approximately 1000-fold compared to the cells treated with the scrambled miRNA (1.29±0.18) (t=18.788, P<0.001); thus, the transfection was successful (Fig. 2). The subsequent CCK8 proliferation assay demonstrated that the proliferation was significantly increased in the miR-125b-overexpressing cells compared to the untreated and scramble-treated cells (P=0.005, P=0.002) (Fig. 3).

Effect of miR-125b overexpression on HGC-27 cell apoptosis. To determine whether the apoptosis of HGC-27 cells is also dysregulated when miR-125b is overexpressed, the cells were
The proportion of Annexin V-positive cells was decreased when miR-125b was overexpressed, which can be observed mainly as the percentage of cells in early apoptosis (lower right quadrant, Fig. 4). Furthermore, in HGC-27 cells expressing the miR-125b mimic, the early and late apoptotic rates were different compared to the scramble-treated and untreated cells (P<0.05, Table I).

Table I. Mean percentage of early and late apoptotic HGC-27 cells from three independent experiments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Early apoptotic cells</th>
<th>Late apoptotic cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimic-miR-125b</td>
<td>6.47±0.39</td>
<td>3.94±0.20</td>
</tr>
<tr>
<td>Scramble</td>
<td>9.04±0.70</td>
<td>3.09±0.09</td>
</tr>
<tr>
<td>Untreated</td>
<td>10.64±1.21<sup>ab</sup></td>
<td>4.34±0.07<sup>b</sup></td>
</tr>
<tr>
<td>F-value</td>
<td>18.909</td>
<td>72.337</td>
</tr>
<tr>
<td>P-value</td>
<td>0.003</td>
<td>0.001</td>
</tr>
</tbody>
</table>

^a vs. mimic-miR-125b, P<0.05; ^b vs. scramble, P<0.05.

Discussion

The potent ability of miRNAs to regulate a variety of physiological and pathological processes is well-accepted as a key component of gene expression regulatory networks in eukaryotes. Indeed, these molecules exert effects on cell proliferation and apoptosis, organismal growth and development, hematopoiesis and organ formation (13). Recent studies on tumor-associated miRNAs have uncovered roles for a number of miRNA molecules in tumorigenesis, as well as in cancer diagnosis and prognosis (2,14).

Our current study on the expression of miR-125b (previously implicated in other tumors types), in gastric cancer confirms the results from a previous study, demonstrating its dysregulation in this type of cancer (11). Furthermore, the overexpression of this miRNA in gastric cancer cells in vitro revealed the affects on cellular proliferation and apoptosis; proliferation was increased and apoptosis decreased when miR-125b was overexpressed. The dysregulation of these cellular processes by miR-125b may promote tumor initiation and progression. These results indicate that miR-125b plays an important role in the pathogenesis of gastric cancer. Further studies are required to determine whether miR-125b...
represents a potential oncogenic target for the diagnosis and treatment of gastric cancer.

Acknowledgements

This study was supported by the National Science Foundation of China (grant no. 81000164).

References