Open Access

Identification of key miRNA‑mRNA pairs in septic mice by bioinformatics analysis

  • Authors:
    • Jianxin Chen
    • Min Lin
    • Sen Zhang
  • View Affiliations

  • Published online on: August 20, 2019     https://doi.org/10.3892/mmr.2019.10594
  • Pages: 3858-3866
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Sepsis is one of the most common causes of death among critically ill patients in intensive care units worldwide; however, the microRNAs (miRNAs/miRs) involved in the sepsis process (and their target genes) are largely unknown. The present study integrated miRNA and mRNA datasets to elucidate key sepsis‑related miRNA‑mRNA pairs. The datasets, GSE74952 and GSE55238 were downloaded from the Gene Expression Omnibus. By performing bioinformatics analysis such as GEO2R, miRNA target gene prediction, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and miRNA‑mRNA network analysis, a total of four sepsis‑related miRNA‑mRNA pairs were successfully obtained. Mmu‑miR‑370‑3p, cluster of differentiation (CD)8a, CD247, Zap70 and inhibitor of nuclear factor κ B kinase subunit β (Ikbkb) were identified as the components involved in these pairs, and these genes were enriched in the T‑cell receptor signaling pathway. Finally, reverse transcription‑quantitative PCR results validated that the expression levels of the four genes (CD8a, CD247, Zap70 and Ikbkb) in the sepsis model mice were consistent with the microarray analysis. In conclusion, the present study identified four sepsis‑related miRNA‑mRNA pairs using bioinformatics analysis. These results indicated that the candidate miRNA‑mRNA pairs may be involved in the regulation of immunity in sepsis, which may in turn act as indicators or therapeutic targets for sepsis.

References

1 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Cecconi M, Evans L, Levy M and Rhodes A: Sepsis and septic shock. Lancet. 392:75–87. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Gobatto AL, Besen BA and Azevedo LC: How can we estimate sepsis incidence and mortality? Shock 47 (1S Suppl 1). S6–S11. 2017.

4 

Martin GS: Sepsis, severe sepsis and septic shock: Changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 10:701–706. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Mayr FB, Yende S and Angus DC: Epidemiology of severe sepsis. Virulence. 5:4–11. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Vincent JL: Individual gene expression and personalised medicine in sepsis. Lancet Respir Med. 4:242–243. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Maslove DM and Wong HR: Gene expression profiling in sepsis: Timing, tissue, and translational considerations. Trends Mol Med. 20:204–213. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Ullah S, John P and Bhatti A: MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep. 41:225–232. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Eledge MR and Yeruva L: Host and pathogen interface: MicroRNAs are modulators of disease outcome. Microbes Infect. 20:410–415. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Chen J, Jiang S, Cao Y and Yang Y: Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J Clin Immunol. 34:340–348. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Rittirsch D, Huber-Lang MS, Flierl MA and Ward PA: Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 4:31–36. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Kanehisa M, Sato Y, Furumichi M, Morishima K and Tanabe M: New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47:D590–D595. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Borken F, Markwart R, Requardt RP, Schubert K, Spacek M, Verner M, Rückriem S, Scherag A, Oehmichen F, Brunkhorst FM and Rubio I: Chronic critical illness from sepsis is associated with an enhanced TCR response. J Immunol. 198:4781–4791. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Patil NK, Bohannon JK, Luan L, Guo Y, Fensterheim B, Hernandez A, Wang J and Sherwood ER: Flt3 ligand treatment attenuates T cell dysfunction and improves survival in a murine model of burn wound sepsis. Shock. 47:40–51. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Ramonell KM, Zhang W, Hadley A, Chen CW, Fay KT, Lyons JD, Klingensmith NJ, McConnell KW, Coopersmith CM and Ford M: CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis. PLoS One. 12:e01888822017. View Article : Google Scholar : PubMed/NCBI

18 

Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L, Sakamoto A, Ito C, Toshimori K and Oda S: Suppression of T cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit Care Med. 45:e77–e85. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Cao C, Chai Y, Shou S, Wang J, Huang Y and Ma T: Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction. Int Immunopharmacol. 54:169–176. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Condotta SA, Khan SH, Rai D, Griffith TS and Badovinac VP: Polymicrobial sepsis increases susceptibility to chronic viral infection and exacerbates CD8+ T cell exhaustion. J Immunol. 195:116–125. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG and Karl IE: Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 166:6952–6963. 2001. View Article : Google Scholar : PubMed/NCBI

22 

van der Poll T, van de Veerdonk FL, Scicluna BP and Netea MG: The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 17:407–420. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D, Krupnick AS, et al: Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Inoue S, Suzuki K, Komori Y, Morishita Y, Suzuki-Utsunomiya K, Hozumi K, Inokuchi S and Sato T: Persistent inflammation and T cell exhaustion in severe sepsis in the elderly. Crit Care. 18:R1302014. View Article : Google Scholar : PubMed/NCBI

25 

Gil D, Schrum AG, Daniels MA and Palmer E: A role for CD8 in the developmental tuning of antigen recognition and CD3 conformational change. J Immunol. 180:3900–3909. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Harty JT, Tvinnereim AR and White DW: CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol. 18:275–308. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Dumontet E, Osman J, Guillemont-Lambert N, Cros G, Moshous D and Picard C: Recurrent respiratory infections revealing CD8α Deficiency. J Clin Immunol. 35:692–695. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Harland KL, Day EB, Apte SH, Russ BE, Doherty PC, Turner SJ and Kelso A: Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 5:35472014. View Article : Google Scholar : PubMed/NCBI

29 

Irving BA and Weiss A: The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 64:891–901. 1991. View Article : Google Scholar : PubMed/NCBI

30 

D'Oro U, Munitic I, Chacko G, Karpova T, McNally J and Ashwell JD: Regulation of constitutive TCR internalization by the zeta-chain. J Immunol. 169:6269–6278. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Eldor R, Klieger Y, Sade-Feldman M, Vaknin I, Varfolomeev I, Fuchs C and Baniyash M: CD247, a novel T cell-derived diagnostic and prognostic biomarker for detecting disease progression and severity in patients with type 2 diabetes. Diabetes Care. 38:113–118. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Picard C, Dogniaux S, Chemin K, Maciorowski Z, Lim A, Mazerolles F, Rieux-Laucat F, Stolzenberg MC, Debre M, Magny JP, et al: Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 39:1966–1976. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Roifman CM, Dadi H, Somech R, Nahum A and Sharfe N: Characterization of ζ-associated protein, 70 kd (ZAP70)-deficient human lymphocytes. J Allergy Clin Immunol. 126:1226–1233.e1. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Huang L, Qiao L, Zhu H, Jiang L and Yin L: Genomics of neonatal sepsis: Has-miR-150 targeting BCL11B functions in disease progression. Ital J Pediatr. 44:1452018. View Article : Google Scholar : PubMed/NCBI

35 

Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 8:49–62. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A, Rizzi M, Janda A, Hese K, Schlesier M, Holzmann K, et al: Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med. 369:2504–2514. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Mousallem T, Yang J, Urban TJ, Wang H, Adeli M, Parrott RE, Roberts JL, Goldstein DB, Buckley RH and Zhong XP: A nonsense mutation in IKBKB causes combined immunodeficiency. Blood. 124:2046–2050. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, J., Lin, M., & Zhang, S. (2019). Identification of key miRNA‑mRNA pairs in septic mice by bioinformatics analysis. Molecular Medicine Reports, 20, 3858-3866. https://doi.org/10.3892/mmr.2019.10594
MLA
Chen, J., Lin, M., Zhang, S."Identification of key miRNA‑mRNA pairs in septic mice by bioinformatics analysis". Molecular Medicine Reports 20.4 (2019): 3858-3866.
Chicago
Chen, J., Lin, M., Zhang, S."Identification of key miRNA‑mRNA pairs in septic mice by bioinformatics analysis". Molecular Medicine Reports 20, no. 4 (2019): 3858-3866. https://doi.org/10.3892/mmr.2019.10594