Open Access

Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids

  • Authors:
    • Weiwei Zhu
    • Xin Zhang
    • Kun Gao
    • Xufang Wang
  • View Affiliations

  • Published online on: August 22, 2019     https://doi.org/10.3892/mmr.2019.10604
  • Pages: 3829-3839
  • Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Peritoneal fibrosis is a serious complication that can occur during peritoneal dialysis (PD), which is primarily caused by damage to peritoneal mesothelial cells (PMCs). The onset of peritoneal fibrosis is delayed or inhibited by promoting PMC survival and inhibiting PMC epithelial‑to‑mesenchymal transition (EMT). In the present study, the effect of astragaloside IV and the role of the nuclear receptor retinoid X receptor‑α (RXRα) in PMCs in high glucose‑based PD fluids was investigated. Human PMC HMrSV5 cells were transfected with RXRα short hairpin RNA (shRNA), or an empty vector, and then treated with PD fluids and astragaloside IV. Cell viability, apoptosis and EMT were examined using the Cell Counting Kit‑8 assay and flow cytometry, and by determining the levels of caspase‑3, E‑cadherin and α‑smooth muscle actin (α‑SMA) via western blot analysis. Cell viability and apoptosis were increased, as were the levels of E‑cadherin in HMrSV5 cells following treatment with PD fluid. The protein levels of α‑SMA and caspase‑3 were increased by treatment with PD fluid. Exposure to astragaloside IV inhibited these changes; however, astragaloside IV did not change cell viability, apoptosis, E‑cadherin or α‑SMA levels in HMrSV5 cells under normal conditions. Transfection of HMrSV5 cells with RXRα shRNA resulted in decreased viability and E‑cadherin expression, and increased apoptosis and α‑SMA levels, in HMrSV5 cells treated with PD fluids and co‑treated with astragaloside IV or vehicle. These results suggested that astragaloside IV increased cell viability, and inhibited apoptosis and EMT in PMCs in PD fluids, but did not affect these properties of PMCs under normal condition. Thus, the present study suggested that RXRα is involved in maintaining viability, inhibiting apoptosis and reducing EMT of PMCs in PD fluid.

References

1 

Khan S and Rosner MH: Peritoneal dialysis for patients with end-stage renal disease and liver cirrhosis. Perit Dial Int. 38:397–401. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Vareldzis R, Naljayan M and Reisin E: The incidence and pathophysiology of the obesity paradox: Should peritoneal dialysis and kidney transplant be offered to patients with obesity and end-stage renal disease? Curr Hypertens Rep. 20:842018. View Article : Google Scholar : PubMed/NCBI

3 

Javaid MM, Khan BA and Subramanian S: Peritoneal dialysis as initial dialysis modality: A viable option for late-presenting end-stage renal disease. J Nephrol. 32:51–56. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Wang WN, Zhang WL, Sun T, Ma FZ, Su S and Xu ZG: Effect of peritoneal dialysis versus hemodialysis on renal anemia in renal in end-stage disease patients: A meta-analysis. Ren Fail. 39:59–66. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Krediet RT, Abrahams AC, de Fijter CWH, Betjes MGH, Boer WH, van Jaarsveld BC, Konings CJAM and Dekker FW: The truth on current peritoneal dialysis: State of the art. Neth J Med. 75:179–189. 2017.PubMed/NCBI

6 

Krediet RT and Struijk DG: Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol. 9:419–429. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Bargman JM: Advances in peritoneal dialysis: A review. Semin Dial. 25:545–549. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Davies SJ: Unraveling the mechanisms of progressive peritoneal membrane fibrosis. Kidney Int. 89:1185–1187. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Witowski J, Kawka E, Rudolf A and Jörres A: New developments in peritoneal fibroblast biology: Implications for inflammation and fibrosis in peritoneal dialysis. Biomed Res Int. 2015:1347082015. View Article : Google Scholar : PubMed/NCBI

10 

Raby AC and Labéta MO: Preventing peritoneal dialysis-associated fibrosis by therapeutic blunting of peritoneal Toll-like receptor activity. Front Physiol. 9:16922018. View Article : Google Scholar : PubMed/NCBI

11 

Zhang Z, Jiang N and Ni Z: Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: New insights based on peritoneal inflammation and angiogenesis. Front Med. 11:349–358. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Zhou Q, Bajo MA, Del Peso G, Yu X and Selgas R: Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int. 90:515–524. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Lee HB and Ha H: Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. J Korean Med Sci. 22:943–945. 2007. View Article : Google Scholar : PubMed/NCBI

14 

De Vriese AS, Tilton RG, Mortier S and Lameire NH: Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant. 21:2549–2555. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Wu J, Xing C, Zhang L, Mao H, Chen X, Liang M, Wang F, Ren H, Cui H, Jiang A, et al: Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. J Cell Mol Med. 22:1190–1201. 2018.PubMed/NCBI

16 

Dobbie JW: Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 12:14–27. 1992.PubMed/NCBI

17 

Strippoli R, Moreno-Vicente R, Battistelli C, Cicchini C, Noce V, Amicone L, Marchetti A, Del Pozo MA and Tripodi M: Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int. 2016:35436782016. View Article : Google Scholar : PubMed/NCBI

18 

Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H and Zhuang S: Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. J Am Soc Nephrol. 27:2631–2644. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Morinelli TA, Luttrell LM, Strungs EG and Ullian ME: Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol. 77:240–250. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Bartosova M, Schaefer B, Vondrak K, Sallay P, Taylan C, Cerkauskiene R, Dzierzega M, Milosevski-Lomic G, Büscher R, Zaloszyc A, et al: Peritoneal dialysis vintage and glucose exposure but not peritonitis episodes drive peritoneal membrane transformation during the first years of PD. Front Physiol. 10:3562019. View Article : Google Scholar : PubMed/NCBI

21 

Choi SY, Ryu HM, Choi JY, Cho JH, Kim CD, Kim YL and Park SH: The role of Toll-like receptor 4 in high-glucose-induced inflammatory and fibrosis markers in human peritoneal mesothelial cells. Int Urol Nephrol. 49:171–181. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Wang L and Zhuang S: The role of tyrosine kinase receptors in peritoneal fibrosis. Perit Dial Int. 35:497–505. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Tomino Y: Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol. 16:109–114. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Duan S, Yu J, Liu Q, Wang Y, Pan P, Xiao L, Ling G and Liu F: Epithelial-to-mesenchymal transdifferentiation of peritoneal mesothelial cells mediated by oxidative stress in peritoneal fibrosis rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 36:34–43. 2011.PubMed/NCBI

25 

Li Z, Zhang L, He W, Zhu C, Yang J and Sheng M: Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis. Int J Mol Sci. 15:12959–12971. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Shan G, Zhou XJ, Xia Y and Qian HJ: Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro. Exp Ther Med. 11:1611–1616. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Zhou X, Sun X, Gong X, Yang Y, Chen C, Shan G and Yao Q: Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int Immunopharmacol. 42:18–24. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Yu M, Shi J, Sheng M, Gao K, Zhang L, Liu L and Zhu Y: Astragalus inhibits Epithelial-to-Mesenchymal transition of peritoneal mesothelial cells by Down-regulating β-catenin. Cell Physiol Biochem. 51:2794–2813. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Zhang WD, Chen H, Zhang C, Liu RH, Li HL and Chen HZ: Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta Med. 72:4–8. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Li W and Fitzloff JF: Determination of astragaloside IV in Radix astragali (Astragalus membranaceus var. monghulicus) using high-performance liquid chromatography with evaporative light-scattering detection. J Chromatogr Sci. 39:459–462. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Zhang L, Li Z, He W, Xu L, Wang J, Shi J and Sheng M: Effects of Astragaloside IV Against the TGF-β1-induced Epithelial-to-Mesenchymal transition in peritoneal mesothelial cells by promoting Smad 7 expression. Cell Physiol Biochem. 37:43–54. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, et al: A comparative encyclopedia of DNA elements in the mouse genome. Nature. 515:355–364. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Bourguet W, Ruff M, Chambon P, Gronemeyer H and Moras D: Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 375:377–382. 1995. View Article : Google Scholar : PubMed/NCBI

35 

Shulman AI and Mangelsdorf DJ: Retinoid × receptor heterodimers in the metabolic syndrome. N Engl J Med. 353:604–615. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Rastinejad F: Retinoid X receptor and its partners in the nuclear receptor family. Curr Opin Struct Biol. 11:33–38. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Watanabe M and Kakuta H: Retinoid X receptor antagonists. Int J Mol Sci. 19(pii): E23542018. View Article : Google Scholar : PubMed/NCBI

38 

Reitzel AM, Macrander J, Mane-Padros D, Fang B, Sladek FM and Tarrant AM: Conservation of DNA and ligand binding properties of retinoid X receptor from the placozoan Trichoplax adhaerens to human. J Steroid Biochem Mol Biol. 184:3–10. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Morishita KI and Kakuta H: Retinoid X receptor ligands with anti-type 2 diabetic activity. Curr Top Med Chem. 17:696–707. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Menéndez-Gutiérrez MP and Ricote M: The multi-faceted role of retinoid X receptor in bone remodeling. Cell Mol Life Sci. 74:2135–2149. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Lee YC, Hung SY, Liou HH, Lin TM, Tsai CH, Lin SH, Tsai YS, Chang MY, Wang HH, Ho LC, et al: Vitamin D can ameliorate chlorhexidine gluconate-induced peritoneal fibrosis and functional deterioration through the inhibition of Epithelial-to-mesenchymal transition of mesothelial cells. Biomed Res Int. 2015:5950302015. View Article : Google Scholar : PubMed/NCBI

42 

Yang L, Wu L, Zhang X, Hu Y, Fan Y and Ma J: 1,25(OH)2D3/VDR attenuates high glucoseinduced epithelialmesenchymal transition in human peritoneal mesothelial cells via the TGFβ/Smad3 pathway. Mol Med Rep. 15:2273–2279. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Yang L, Wu L, Du S, Hu Y, Fan Y and Ma J: 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway. Mol Med Rep. 14:839–844. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Su X, Yu R, Yang X, Zhou G, Wang Y, Li L and Li D: Telmisartan attenuates peritoneal fibrosis via peroxisome proliferator-activated receptor-gamma activation in rats. Clin Exp Pharmacol Physiol. 42:671–679. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Su X, Zhou G, Wang Y, Yang X, Li L, Yu R and Li D: The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats. Inflammation. 37:729–737. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Zhou G, Su X, Ma J, Wang L and Li D: Pioglitazone inhibits high glucose-induced synthesis of extracellular matrix by NF-κB and AP-1 pathways in rat peritoneal mesothelial cells. Mol Med Rep. 7:1336–1342. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Zhang YF, Wang Q, Su YY, Wang JL, Hua BJ, Yang S, Feng JX and Li HY: PPAR-γ agonist rosiglitazone protects rat peritoneal mesothelial cells against peritoneal dialysis solution-induced damage. Mol Med Rep. 15:1786–1792. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Rougier JP, Moullier P, Piedagnel R and Ronco PM: Hyperosmolality suppresses but TGF beta 1 increases MMP9 in human peritoneal mesothelial cells. Kidney Int. 51:337–347. 1997. View Article : Google Scholar : PubMed/NCBI

49 

Zhao JL, Guo MZ, Zhu JJ, Zhang T and Min DY: Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cell Mol Biol Lett. 24:322019. View Article : Google Scholar : PubMed/NCBI

50 

Zhang P, Dai H and Peng L: Involvement of STAT3 signaling in high glucose-induced epithelial mesenchymal transition in human peritoneal mesothelial cell line HMrSV5. Kidney Blood Press Res. 44:179–187. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Chu Y, Wang Y, Zheng Z, Lin Y, He R, Liu J and Yang X: Proinflammatory effect of high glucose concentrations on HMrSV5 cells via the autocrine effect of HMGB1. Front Physiol. 8:7622017. View Article : Google Scholar : PubMed/NCBI

52 

Tani H, Sato Y, Ueda M, Miyazaki Y, Suginami K, Horie A, Konishi I and Shinomura T: Role of versican in the pathogenesis of peritoneal endometriosis. J Clin Endocrinol Metab. 101:4349–4356. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Shi S, Zhang Y, Wen W, Zhao Y and Sun L: Molecular mechanisms of melatonin in the reversal of LPS-induced EMT in peritoneal mesothelial cells. Mol Med Rep. 14:4342–4348. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Zhang L, Liu J, Liu Y, Xu Y, Zhao X, Qian J, Sun B and Xing C: Fluvastatin inhibits the expression of fibronectin in human peritoneal mesothelial cells induced by high-glucose peritoneal dialysis solution via SGK1 pathway. Clin Exp Nephrol. 19:336–342. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Yang Y, Liu K, Liang Y, Chen Y, Chen Y and Gong Y: Histone acetyltransferase inhibitor C646 reverses epithelial to mesenchymal transition of human peritoneal mesothelial cells via blocking TGF-β1/Smad3 signaling pathway in vitro. Int J Clin Exp Pathol. 8:2746–2754. 2015.PubMed/NCBI

57 

Ju KD, Kim HJ, Tsogbadrakh B, Lee J, Ryu H, Cho EJ, Hwang YH, Kim K, Yang J, Ahn C and Oh KH: HL156A, a novel AMP-activated protein kinase activator, is protective against peritoneal fibrosis in an in vivo and in vitro model of peritoneal fibrosis. Am J Physiol Renal Physiol. 310:F342–F350. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Xiong C, Liu N, Fang L, Zhuang S and Yan H: Suramin inhibits the development and progression of peritoneal fibrosis. J Pharmacol Exp Ther. 351:373–382. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Liu J, Zeng L, Zhao Y, Zhu B, Ren W and Wu C: Selenium suppresses lipopolysaccharide-induced fibrosis in peritoneal mesothelial cells through inhibition of epithelial-to-mesenchymal transition. Biol Trace Elem Res. 161:202–209. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Lu Y, Gao L, Li L, Zhu Y, Wang Z, Shen H and Song K: Hydrogen sulfide alleviates peritoneal fibrosis via attenuating inflammation and TGF-β1 synthesis. Nephron. 131:210–219. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES and Kang DH: Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci Rep. 7:56902017. View Article : Google Scholar : PubMed/NCBI

62 

Qian W, Cai X, Qian Q, Zhang W and Wang D: Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J Cell Mol Med. 22:4354–4365. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Wang X, Gao Y, Tian N, Wang T, Shi Y, Xu J and Wu B: Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis. Sci Rep. 9:3232019. View Article : Google Scholar : PubMed/NCBI

64 

Yao XM, Liu YJ, Wang YM, Wang H, Zhu BB, Liang YP, Yao WG, Yu H, Wang NS, Zhang XM and Peng W: Astragaloside IV prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6. Mol Med Rep. 13:5149–5156. 2016. View Article : Google Scholar : PubMed/NCBI

65 

You L, Fang Z, Shen G, Wang Q, He Y, Ye S, Wang L, Hu M, Lin Y, Liu M and Jiang A: Astragaloside IV prevents high glucoseinduced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol Med Rep. 19:1603–1612. 2019.PubMed/NCBI

66 

Wang J and Guo HM: Astragaloside IV ameliorates high glucose-induced HK-2 cell apoptosis and oxidative stress by regulating the Nrf2/ARE signaling pathway. Exp Ther Med. 17:4409–4416. 2019.PubMed/NCBI

67 

Xue B, Huang J, Ma B, Yang B, Chang D and Liu J: Astragaloside IV protects primary cerebral cortical neurons from oxygen and glucose deprivation/reoxygenation by activating the PKA/CREB pathway. Neuroscience. 404:326–337. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Zhu J and Wen K: Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res. 32:1289–1296. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Qin CD, Ma DN, Ren ZG, Zhu XD, Wang CH, Wang YC, Ye BG, Cao MQ, Gao DM and Tang ZY: Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3β/β-catenin pathway. Oncol Rep. 37:1725–1735. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Li Y, Ye Y and Chen H: Astragaloside IV inhibits cell migration and viability of hepatocellular carcinoma cells via suppressing long noncoding RNA ATB. Biomed Pharmacother. 99:134–141. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Yang J, Zhu T, Liu X, Zhang L, Yang Y, Zhang J and Guο M: Heat shock protein 70 protects rat peritoneal mesothelial cells from advanced glycation end-products-induced Epithelial-to-mesenchymal transition through mitogen-activated protein Kinases/extracellular signal-regulated kinases and transforming growth factor-β/Smad pathways. Mol Med Rep. 11:4473–4481. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Liu J, Bao J, Hao J, Peng Y and Hong F: HSP70 inhibits high glucose-induced Smad3 activation and attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Mol Med Rep. 10:1089–1095. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Abe S, Obata Y, Oka S, Koji T, Nishino T and Izumikawa K: Chondroitin sulfate prevents peritoneal fibrosis in mice by suppressing NF-κB activation. Med Mol Morphol. 49:144–153. 2016. View Article : Google Scholar : PubMed/NCBI

74 

He L, Che M, Hu J, Li S, Jia Z, Lou W, Li C, Yang J, Sun S, Wang H and Chen X: Twist contributes to proliferation and epithelial-to-mesenchymal transition-induced fibrosis by regulating YB-1 in human peritoneal mesothelial cells. Am J Pathol. 185:2181–2193. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Oba-Yabana I, Mori T, Takahashi C, Hirose T, Ohsaki Y, Kinugasa S, Muroya Y, Sato E, Nguyen G, Piedagnel R, et al: Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells. Sci Rep. 8:26482018. View Article : Google Scholar : PubMed/NCBI

76 

Shang J, He Q, Chen Y, Yu D, Sun L, Cheng G, Liu D, Xiao J and Zhao Z: miR-15a-5p suppresses inflammation and fibrosis of peritoneal mesothelial cells induced by peritoneal dialysis via targeting VEGFA. J Cell Physiol. 234:9746–9755. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Gao Q, Xu L, Yang Q and Guan TJ: MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1. J Cell Physiol. 234:5915–5925. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Liu HS, Shi HL, Huang F, Peterson KE, Wu H, Lan YY, Zhang BB, He YX, Woods T, Du M, et al: Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep. 6:191372016. View Article : Google Scholar : PubMed/NCBI

79 

Wang X, Wang Y, Hu JP, Yu S, Li BK, Cui Y, Ren L and Zhang LD: Astragaloside IV, a natural PPARgamma agonist, reduces Aβ production in Alzheimer's disease through inhibition of BACE1. Mol Neurobiol. 54:2939–2949. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhu, W., Zhang, X., Gao, K., & Wang, X. (2019). Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids. Molecular Medicine Reports, 20, 3829-3839. https://doi.org/10.3892/mmr.2019.10604
MLA
Zhu, W., Zhang, X., Gao, K., Wang, X."Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids". Molecular Medicine Reports 20.4 (2019): 3829-3839.
Chicago
Zhu, W., Zhang, X., Gao, K., Wang, X."Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids". Molecular Medicine Reports 20, no. 4 (2019): 3829-3839. https://doi.org/10.3892/mmr.2019.10604