Open Access

Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells

  • Authors:
    • Bo Xu
    • Xiang Wei
    • Minjian Chen
    • Kaipeng Xie
    • Yuqing Zhang
    • Zhenyao Huang
    • Tianyu Dong
    • Weiyue Hu
    • Kun Zhou
    • Xiumei Han
    • Xin Wu
    • Yankai Xia
  • View Affiliations

  • Published online on: August 23, 2019     https://doi.org/10.3892/mmr.2019.10609
  • Pages: 3802-3810
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glial cell line‑derived neurotrophic factor (GDNF) is critical for the proliferation of spermatogonial stem cells (SSCs), but the underlying mechanisms remain poorly understood. In this study, an unbiased metabolomic analysis was performed to examine the metabolic modifications in SSCs following GDNF deprivation, and 11 metabolites were observed to decrease while three increased. Of the 11 decreased metabolites identified, glycylglycine was observed to significantly rescue the proliferation of the impaired SSCs, while no such effect was observed by adding sorbitol. However, the expression of self‑renewal genes, including B‑cell CLL/lymphoma 6 member B, ETS variant 5, GDNF family receptor α1 and early growth response protein 4 remained unaltered following glycylglycine treatment. This finding suggests that although glycylglycine serves an important role in the proliferation of SSCs, it is not required for the self‑renewal of SSCs.

References

1 

Phillips BT, Gassei K and Orwig KE: Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 365:1663–1678. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Hofmann MC: Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 288:95–103. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, et al: Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 287:1489–1493. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Meng X, de Rooij DG, Westerdahl K, Saarma M and Sariola H: Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res. 61:3267–3271. 2001.PubMed/NCBI

5 

Hofmann MC, Braydich-Stolle L, Dettin L, Johnson E and Dym M: Immortalization of mouse germ line stem cells. Stem Cells. 23:200–210. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Kubota H, Avarbock MR and Brinster RL: Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod. 71:722–731. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Horgan RP and Kenny LC: ‘Omic'technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstetrician Gynaecol. 13:189–195. 2011. View Article : Google Scholar

8 

Ito K and Suda T: Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 15:243–256. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerias A, Batchelder EM, Plongthongkum N, Lutz M, et al: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22:168–177. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S and Siuzdak G: Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol. 6:411–417. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Xu B, Chen M, Ji X, Mao Z, Zhang X, Wang X and Xia Y: Metabolomic profiles delineate the potential role of glycine in gold nanorod-induced disruption of mitochondria and blood-testis barrier factors in TM-4 cells. Nanoscale. 6:8265–8273. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, Liu L, Dong S and Zhu YG: Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a han chinese population. Environ Sci Technol. 47:8843–8851. 2013.PubMed/NCBI

13 

Kubota H and Brinster RL: Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol. 86:59–84. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Wei X, Jia Y, Xue Y, Geng L, Wang M, Li L, Wang M, Zhang X and Wu X: GDNF-expressing STO feeder layer supports the long-term propagation of undifferentiated mouse spermatogonia with stem cell properties. Sci Rep. 6:367792016. View Article : Google Scholar : PubMed/NCBI

15 

Xu B, Chen M, Ji X, Yao M, Mao Z, Zhou K, Xia Y, Han X and Tang W: Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells. Toxicol In Vitro. 29:1745–1752. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Yuan B, Wu W, Chen M, Gu H, Tang Q, Guo D, Chen T, Chen Y, Lu C, Song L, et al: From the Cover: Metabolomics reveals a role of betaine in prenatal DBP exposure-induced epigenetic transgenerational failure of spermatogenesis in Rats. Toxicol Sci. 158:356–366. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Gika HG, Macpherson E, Theodoridis GA and Wilson ID: Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 871:299–305. 2008. View Article : Google Scholar : PubMed/NCBI

18 

L Eriksson, T Byrne, E Johansson, J Trygg and C Vikström: Multi-and megavariate data analysis basic principles and applications.

19 

Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY, Chen TL, Qiu YP, Chen PP, Li WJ, Xu LY, et al: A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteomics. 9:2617–2628. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Kubota H, Avarbock MR and Brinster RL: Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 101:16489–16494. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Mei XX, Wang J and Wu J: Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl. 17:347–54. 2015.PubMed/NCBI

23 

Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, et al: Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 287:1489–93. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Cao M, Zhao L, Chen H, Xue W and Lin D: NMR-based metabolomic analysis of human bladder cancer. Anal Sci. 28:451–456. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Ding J, Li T, Wang X, Zhao E, Choi JH, Yang L, Zha Y, Dong Z, Huang S, Asara JM, et al: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18:896–907. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM, et al: Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 4:e8772013. View Article : Google Scholar : PubMed/NCBI

28 

Tsuboi KK, Penefsky ZJ and Hudson PB: Enzymes of the human erythrocyte. III. Tripeptidase, purification and specific properties. Arch Biochem Biophys. 68:54–68. 1957. View Article : Google Scholar : PubMed/NCBI

29 

Gödde C, Liebergesell M and Steinbüchel A: Isolation of poly(beta-L-malic acid)-degrading bacteria and purification and characterization of the PMA hydrolase from Comamonas acidovorans strain 7789. FEMS Microbiol Lett. 173:365–372. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Schneider S, Sandalova T, Schneider G, Sprenger GA and Samland AK: Replacement of a phenylalanine by a tyrosine in the active site confers fructose-6-phosphate aldolase activity to the transaldolase of Escherichia coli and human origin. J Biol Chem. 283:30064–72. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Happe HK, Bylund DB and Murrin LC: Agonist-stimulated [35S]GTPgammaS autoradiography: Optimization for high sensitivity. Eur J Pharmacol. 422:1–13. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Kava R, Meister K and Kroger M: Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. Comprehensive Rev Food Sci Food Safety. 5:35–47. 2006. View Article : Google Scholar

33 

Graier WF, Grubenthal I, Dittrich P, Wascher TC and Kostner GM: Intracellular mechanism of high D-glucose-induced modulation of vascular cell proliferation. Eur J Pharmacol. 294:221–229. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Turner JL and Bierman EL: Effects of glucose and sorbitol on proliferation of cultured human skin fibroblasts and arterial smooth-muscle cells. Diabetes. 27:583–588. 1978. View Article : Google Scholar : PubMed/NCBI

35 

He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC and Dym M: Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 26:266–278. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Ishii K, Kanatsu-Shinohara M, Toyokuni S and Shinohara T: FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development. 139:1734–1743. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR and Brinster RL: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod. 82:1103–1111. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Wu X, Goodyear SM, Tobias JW, Avarbock MR and Brinster RL: Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod. 85:1114–1123. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB and Gasbarrini A: Colon cancer stem cells: Controversies and perspectives. World J Gastroenterol. 19:2997–3006. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Chen T, Heller E, Beronja S, Oshimori N, Stokes N and Fuchs E: An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature. 485:104–108. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, B., Wei, X., Chen, M., Xie, K., Zhang, Y., Huang, Z. ... Xia, Y. (2019). Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells. Molecular Medicine Reports, 20, 3802-3810. https://doi.org/10.3892/mmr.2019.10609
MLA
Xu, B., Wei, X., Chen, M., Xie, K., Zhang, Y., Huang, Z., Dong, T., Hu, W., Zhou, K., Han, X., Wu, X., Xia, Y."Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells". Molecular Medicine Reports 20.4 (2019): 3802-3810.
Chicago
Xu, B., Wei, X., Chen, M., Xie, K., Zhang, Y., Huang, Z., Dong, T., Hu, W., Zhou, K., Han, X., Wu, X., Xia, Y."Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells". Molecular Medicine Reports 20, no. 4 (2019): 3802-3810. https://doi.org/10.3892/mmr.2019.10609