Open Access

Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma

  • Authors:
    • Xiangguo Duan
    • Juanxi Liu
    • Jianjian Cui
    • Bin Ma
    • Qiunan Zhou
    • Xiaojuan Yang
    • Zhenhui Lu
    • Yong Du
    • Chunxia Su
  • View Affiliations

  • Published online on: September 2, 2019     https://doi.org/10.3892/mmr.2019.10641
  • Pages: 3773-3781
  • Copyright: © Duan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

T cell immunoglobulin and ITIM domain (TIGIT) is a recently identified T cell coinhibitory receptor. Studies have shown that TIGIT is expressed in colon adenocarcinoma, uterine corpus endometrioid carcinoma, breast carcinoma and kidney renal clear cell carcinoma. However, the role of the TIGIT/human poliovirus receptor (CD155) pathway in the pathogenesis of hepatocellular carcinoma (HCC) remains to be elucidated. In the present study, the expression of TIGIT and CD155 in HCC tissues and peripheral blood were determined, and correlations among TIGIT, CD155, TIGIT+ CD4+ T cells, TIGIT+ regulatory T (Treg) cells and α‑fetoprotein (AFP) were investigated in order to identify a potential target for diagnosing and treating HCC. Immunohistochemistry, reverse transcription‑quantitative PCR analysis and western blotting were used to examine the expression of TIGIT and CD155 in cancerous tissues and peripheral blood collected from patients with HCC. The frequency of TIGIT+ CD4+ T cells and TIGIT+ Treg cells and the concentration of inflammatory cytokines secreted by T cell subsets were analyzed by flow cytometry and a Merck Milliplex assay. Correlations between the frequency of TIGIT+ CD4+ T and TIGIT+ Treg cells and AFP were analyzed using Spearman's rank correlation test. With the degree of cancerous differentiation from high to low, the expression levels of TIGIT and CD155 were upregulated in the cancerous tissues from patients with HCC. TIGIT+ CD4+ T cell and TIGIT+ Treg cell frequencies were decreased in peripheral blood from postoperative patients with HCC. The increased expression of TIGIT was positively correlated with the level of AFP. These results indicate that co‑inhibitory receptor TIGIT may be involved in the pathogenesis of HCC and represent a novel target for the diagnosis and treatment of HCC.

References

1 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Mazzanti R, Gramantieri L and Bolondi L: Hepatocellular carcinoma: Epidemiology and clinical aspects. Mol Aspects Med. 29:130–143. 2008. View Article : Google Scholar : PubMed/NCBI

3 

El-Serag HB: Epidemiology of hepatocellular carcinoma in USA. Hepatol Res. 37 (Suppl 2):S88–S94. 2007. View Article : Google Scholar : PubMed/NCBI

4 

El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Greten TF, Duffy AG and Korangy F: Hepatocellular Carcinoma from an immunologic perspective. Clin Cancer Res. 19:6678–6685. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Parkin DM, Bray F, Ferlay J and Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer. 94:153–156. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M and Colonna M: A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 39:695–703. 2009. View Article : Google Scholar : PubMed/NCBI

8 

He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W, et al: CD155T/TIGIT signaling regulates CD8(+) T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 77:6375–6388. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH and Kuchroo VK: Cutting Edge: TIGIT Has T cell-intrinsic inhibitory functions. J Immunol. 186:1338–1342. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 10:48–57. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, et al: Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol. 41:902–915. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, et al: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 40:569–581. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Trehanpati N and Vyas AK: Immune regulation by T regulatory cells in hepatitis B virus-related inflammation and cancer. Scand J Immunol. 85:175–181. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Kurose K, Ohue Y, Sato E, Yamauchi A, Eikawa S, Isobe M, Nishio Y, Uenaka A, Oka M and Nakayama E: Increase in activated treg in til in lung cancer and in vitro depletion of treg by ADCC using an antihuman CCR4 mAb (KM2760). J Thorac Oncol. 10:74–83. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Godefroy E, Zhong H, Pham P, Friedman D and Yazdanbakhsh K: TIGIT-positive circulating follicular helper T cells display robust B-cell help functions: Potential role in sickle cell alloimmunization. Haematologica. 100:1415–1425. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE and Antony PA: Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 190:4899–4909. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL and Grogan JL: Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA. 109:5399–5404. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, et al: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 106:17858–17863. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Zhao W, Dong Y, Wu C, Ma Y, Jin Y and Ji Y: TIGIT overexpression diminishes the function of CD4 T cells and ameliorates the severity of rheumatoid arthritis in mouse models. Exp Cell Res. 340:132–138. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ and Zarour HM: TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest. 125:2046–2058. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, Jiang Y, Xu L, Ma Y, Zheng H, et al: T-cell Immunoglobulin and ITIM Domain Contributes to CD8(+) T-cell Immunosenescence. Aging Cell. 17:2018. View Article : Google Scholar

24 

Imbeaud S, Ladeiro Y and Zucman-Rossi J: Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. Semin Liver Dis. 30:75–86. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Sakaida N, Kaibori M, Kamiyama Y, Nishizawa M, Fujisawa J, et al: Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology. 46:48–57. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Yang L and Karin M: Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ. 21:1677–1686. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Sanz-Cameno P, Trapero-Marugán M, Chaparro M, Jones EA and Moreno-Otero R: Angiogenesis: From chronic liver inflammation to hepatocellular carcinoma. J Oncol. 2010:2721702010. View Article : Google Scholar : PubMed/NCBI

28 

Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E, Boor PP, Mancham S, Verhoef C, Polak WG, Grünhagen D, Pan Q, Janssen H, et al: Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology. 4:e10083552015. View Article : Google Scholar : PubMed/NCBI

29 

Callahan MK, Postow MA and Wolchok JD: CTLA-4 and PD-1 pathway blockade: Combinations in the clinic. Front Oncol. 4:3852014.PubMed/NCBI

30 

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, Enk J, Jonjic S and Mandelboim O: Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol. 43:2138–2150. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Jenne CN and Kubes P: Immune surveillance by the liver. Nat Immunol. 14:996–1006. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Nemeth E, Baird AW and O'Farrelly C: Microanatomy of the liver immune system. Semin Immunopathol. 31:333–343. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Zhong Z, Carroll KD, Policarpio D, Osborn C, Gregory M, Bassi R, Jimenez X, Prewett M, Liebisch G, Persaud K, et al: Anti-transforming growth factor beta receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin Cancer Res. 16:1191–1205. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T and Krajewska WM: Expression of endoglin in primary endometrial cancer. Oncology. 81:243–250. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Mao L, Hou H, Wu S, Zhou Y, Wang J, Yu J, Wu X, Lu Y, Mao L, Bosco MJ, et al: TIGIT signalling pathway negatively regulates CD4+ T-cell responses in systemic lupus erythematosus. Immunology. 151:280–290. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Lowther DE, Goods BA, Lucca LE, Lerner BA, Raddassi K, van Dijk D, Hernandez AL, Duan X, Gunel M, Coric V, et al: PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight. 1(pii): e859352016.PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Duan, X., Liu, J., Cui, J., Ma, B., Zhou, Q., Yang, X. ... Su, C. (2019). Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Molecular Medicine Reports, 20, 3773-3781. https://doi.org/10.3892/mmr.2019.10641
MLA
Duan, X., Liu, J., Cui, J., Ma, B., Zhou, Q., Yang, X., Lu, Z., Du, Y., Su, C."Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma". Molecular Medicine Reports 20.4 (2019): 3773-3781.
Chicago
Duan, X., Liu, J., Cui, J., Ma, B., Zhou, Q., Yang, X., Lu, Z., Du, Y., Su, C."Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma". Molecular Medicine Reports 20, no. 4 (2019): 3773-3781. https://doi.org/10.3892/mmr.2019.10641