Open Access

Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition

  • Authors:
    • Zhenlv Lin
    • Lin Zhang
    • Junfeng Zhou
    • Jiantao Zheng
  • View Affiliations

  • Published online on: August 21, 2019     https://doi.org/10.3892/mmr.2019.10597
  • Pages: 3735-3745
  • Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aberrant expression of tumor suppressor Smad4 often occurs in colorectal cancer (CRC), and this phenomenon is believed to be associated with drug resistance. The present study aimed to investigate the effects of Smad4 on the sensitivity of CRC cells to cetuximab, and the possible mechanism underlying such an effect. A total of 629 colorectal adenocarcinoma cases were downloaded from The Cancer Genome Atlas (TCGA) database, and a Smad4 mutation rate of ~21% was demonstrated among the cases. Low expression of Smad4 was present in CRC tissues analyzed by TCGA and in four CRC cell lines, as determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Cell Counting kit‑8 (CCK‑8) was used to measure the effects of different concentrations of cetuximab on SW480 cell viability at 24 and 48 h. The results demonstrated that treatment of SW480 cells with 20 µg/ml cetuximab for 48 h markedly reduced cell viability. In addition, plasmids were transfected into SW480 cells to induce Smad4 silencing or overexpression. Silencing Smad4 attenuated the sensitivity of SW480 CRC cells to cetuximab; this effect was reflected in increased cell viability and slightly increased migration and invasion, as determined by CCK‑8, wound scratch and Transwell analyses. RT‑qPCR and western blotting was performed to assess the expression levels of apoptosis‑ and epithelial‑mesenchymal transition (EMT)‑related genes. Silencing Smad4 partly reversed the effects of cetuximab on the mRNA and protein expression levels of vimentin, Bax/Bcl‑2 and E‑cadherin. However, Smad4 overexpression enhanced SW480 cell sensitivity to cetuximab. In conclusion, Smad4 may serve a vital role in the sensitivity of CRC cells to chemotherapeutic drugs by promoting EMT.

References

1 

Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI

3 

O'Connell MJ, Campbell ME, Goldberg RM, Grothey A, Seitz JF, Benedetti JK, André T, Haller DG and Sargent DJ: Survival following recurrence in stage II and III colon cancer: Findings from the ACCENT data set. J Clin Oncol. 26:2336–2341. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Weitz J, Koch M, Debus J, Höhler T, Galle PR and Büchler MW: Colorectal cancer. Lancet. 365:153–165. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, et al: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 29:2011–2019. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Meyerhardt JA and Mayer RJ: Systemic therapy for colorectal cancer. N Engl J Med. 352:476–487. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, et al: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 351:337–345. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S and Bardelli A: Resistance to anti-EGFR therapy in colorectal cancer: From heterogeneity to convergent evolution. Cancer Discov. 4:1269–1280. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Bronte G, Silvestris N, Castiglia M, Galvano A, Passiglia F, Sortino G, Cicero G, Rolfo C, Peeters M, Bazan V, et al: New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: Do all roads lead to RAS? Oncotarget. 6:24780–24796. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Demagny H and De Robertis EM: Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling. Mol Cell Oncol. 3:e10251812015. View Article : Google Scholar : PubMed/NCBI

11 

Inamoto S, Itatani Y, Yamamoto T, Minamiguchi S, Hirai H, Iwamoto M, Hasegawa S, Taketo MM, Sakai Y and Kawada K: Loss of SMAD4 promotes colorectal cancer progression by accumulation of myeloid-derived suppressor cells through the CCL15-CCR1 chemokine axis. Clin Cancer Res. 22:492–501. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Voorneveld PW, Kodach LL, Jacobs RJ, Liv N, Zonnevylle AC, Hoogenboom JP, Biemond I, Verspaget HW, Hommes DW, de Rooij K, et al: Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology. 147:196–208.e113. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y and Han W: The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One. 8:e555322013. View Article : Google Scholar : PubMed/NCBI

14 

Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Järvinen H, Mecklin JP, Hemminki A, Schwartz S Jr, Aaltonen LA and Arango D: SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 11:2606–2611. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Alhopuro P, Alazzouzi H, Sammalkorpi H, Dávalos V, Salovaara R, Hemminki A, Järvinen H, Mecklin JP, Schwartz S Jr, Aaltonen LA and Arango D: SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res. 11:6311–6316. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Losi L, Bouzourene H and Benhattar J: Loss of Smad4 expression predicts liver metastasis in human colorectal cancer. Oncol Rep. 17:1095–1099. 2007.PubMed/NCBI

17 

Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, et al: Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 18:3098–3103. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Shintani Y, Okimura A, Sato K, Nakagiri T, Kadota Y, Inoue M, Sawabata N, Minami M, Ikeda N, Kawahara K, et al: Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann Thorac Surg. 92:1794–1804. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Tomono T, Yano K and Ogihara T: Snail-induced epithelial-to-mesenchymal transition enhances P-gp-mediated multidrug resistance in HCC827 cells. J Pharm Sci. 106:2642–2649. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Shi Q, Diao Y, Jin F and Ding Z: Antimetastatic effects of Aidi on human esophageal squamous cell carcinoma by inhibiting epithelialmesenchymal transition and angiogenesis. Mol Med Rep. 18:131–138. 2018.PubMed/NCBI

21 

Zheng J, Zhang M, Zhang L, Ding X, Li W and Lu S: HSPC159 promotes proliferation and metastasis via inducing EMT and activating PI3K/Akt pathway in breast cancer. Cancer Sci. 109:2153–2163. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Kalluri R: EMT: When epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 119:1417–1419. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Greenburg G and Hay ED: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 95:333–339. 1982. View Article : Google Scholar : PubMed/NCBI

24 

Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Moon SU, Kang MH, Sung JH, Kim JW, Lee JO, Kim YJ, Lee KW, Bang SM, Lee JS and Kim JH: Effect of Smad3/4 on chemotherapeutic drug sensitivity in colorectal cancer cells. Oncol Rep. 33:185–192. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Zhang B, Zhang B, Chen X, Bae S, Singh K, Washington MK and Datta PK: Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br J Cancer. 110:946–957. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, Zhou JR and Thiagalingam S: Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 71:998–1008. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Sun C, Wang FJ, Zhang HG, Xu XZ, Jia RC, Yao L and Qiao PF: miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway. World J Gastroenterol. 23:1816–1827. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, Cao L and Freeman JW: Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res. 68:4221–4228. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Wang H, Rajan S, Liu G and Chakrabarty S: Transforming growth factor beta suppresses beta-catenin/Wnt signaling and stimulates an adhesion response in human colon carcinoma cells in a Smad4/DPC4 independent manner. Cancer Lett. 264:281–287. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, Jacobs RJ, Paulo P, Santos-Silva F, van Seuningen I, et al: Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 215:411–420. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Huang S, Zhang F, Miao L, Zhang H, Fan Z, Wang X and Ji G: Lentiviral-mediated Smad4 RNAi induced anti-proliferation by p16 up-regulation and apoptosis by caspase 3 down-regulation in hepatoma SMMC-7721 cells. Oncol Rep. 20:1053–1059. 2008.PubMed/NCBI

35 

Druliner BR, Ruan X, Sicotte H, O'Brien D, Liu H, Kocher JA and Boardman L: Early genetic aberrations in patients with sporadic colorectal cancer. Mol Carcinog. 57:114–124. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, Abousamra AO, Shaw KR, Xiao L, Hassan MM, et al: Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: Determination of frequency and distribution pattern. J Gastrointest Oncol. 7:882–902. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Müller MF, Ibrahim AE and Arends MJ: Molecular pathological classification of colorectal cancer. Virchows Arch. 469:125–134. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Mehrvarz Sarshekeh A, Advani S, Overman MJ, Manyam G, Kee BK, Fogelman DR, Dasari A, Raghav K, Vilar E, Manuel S, et al: Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS One. 12:e01733452017. View Article : Google Scholar : PubMed/NCBI

39 

Wang C, Zhou Y, Ruan R, Zheng M, Han W and Liao L: High expression of COUP-TF II cooperated with negative Smad4 expression predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 8:7112–7121. 2015.PubMed/NCBI

40 

Mei Z, Shao YW, Lin P, Cai X, Wang B, Ding Y, Ma X, Wu X, Xia Y, Zhu D, et al: SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients. BMC Cancer. 18:4792018. View Article : Google Scholar : PubMed/NCBI

41 

Zhang B, Leng C, Wu C, Zhang Z, Dou L, Luo X, Zhang B and Chen X: Smad4 sensitizes colorectal cancer to 5-fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade. Oncol Rep. 35:1807–1815. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, Howard JD, Markovic A, Bedi A, Ravi R, et al: SMAD4 loss is associated with cetuximab resistance and induction of MAPK/JNK activation in head and neck cancer cells. Clin Cancer Res. 23:5162–5175. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Cheng H, Fertig EJ, Ozawa H, Hatakeyama H, Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G and Chung CH: Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biol Ther. 16:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Wang F, Xia X, Yang C, Shen J, Mai J, Kim HC, Kirui D, Kang Y, Fleming JB, Koay EJ, et al: SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin Cancer Res. 24:3176–3185. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Sun FD, Wang PC, Luan RL, Zou SH and Du X: MicroRNA-574 enhances doxorubicin resistance through down-regulating SMAD4 in breast cancer cells. Eur Rev Med Pharmacol Sci. 22:1342–1350. 2018.PubMed/NCBI

46 

Shiou SR, Singh AB, Moorthy K, Datta PK, Washington MK, Beauchamp RD and Dhawan P: Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res. 67:1571–1579. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Xiao DS, Wen JF, Li JH, Hu ZL, Zheng H and Fu CY: Effect of deleted pancreatic cancer locus 4 gene transfection on biological behaviors of human colorectal carcinoma cells. World J Gastroenterol. 11:348–352. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Liu SQ, Xu CY, Wu WH, Fu ZH, He SW, Qin MB and Huang JA: Sphingosine kinase 1 promotes the metastasis of colorectal cancer by inducing the epithelialmesenchymal transition mediated by the FAK/AKT/MMPs axis. Int J Oncol. 54:41–52. 2019.PubMed/NCBI

49 

Thiery JP and Chopin D: Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev. 18:31–42. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Potts JD and Runyan RB: Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev Biol. 134:392–401. 1989. View Article : Google Scholar : PubMed/NCBI

51 

Brown CB, Boyer AS, Runyan RB and Barnett JV: Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 283:2080–2082. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW and Doetschman T: Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet. 11:409–414. 1995. View Article : Google Scholar : PubMed/NCBI

53 

Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N and Groffen J: Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 11:415–421. 1995. View Article : Google Scholar : PubMed/NCBI

54 

Oft M, Peli J, Rudaz C, Schwarz H, Beug H and Reichmann E: TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10:2462–2477. 1996. View Article : Google Scholar : PubMed/NCBI

55 

Battifora H: Spindle cell carcinoma: Ultrastructural evidence of squamous origin and collagen production by the tumor cells. Cancer. 37:2275–2282. 1976. View Article : Google Scholar : PubMed/NCBI

56 

Buchmann A, Ruggeri B, Klein-Szanto AJ and Balmain A: Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res. 51:4097–4101. 1991.PubMed/NCBI

57 

Geiger T, Sabanay H, Kravchenko-Balasha N, Geiger B and Levitzki A: Anomalous features of EMT during keratinocyte transformation. PLoS One. 3:e15742008. View Article : Google Scholar : PubMed/NCBI

58 

Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Larue L and Bellacosa A: Epithelial-mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 24:7443–7454. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Thompson EW, Newgreen DF and Tarin D: Carcinoma invasion and metastasis: A role for epithelial-mesenchymal transition? Cancer Res. 65:5991–5995. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M and Tanabe KK: Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 68:2391–2399. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Liu Y, Li Y, Wang R, Qin S, Liu J, Su F, Yang Y, Zhao F, Wang Z and Wu Q: MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. J Exp Clin Cancer Res. 35:192016. View Article : Google Scholar : PubMed/NCBI

63 

Wen Z, Feng S, Wei L, Wang Z, Hong D and Wang Q: Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med. 36:1657–1663. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Della Corte CM, Bellevicine C, Vicidomini G, Vitagliano D, Malapelle U, Accardo M, Fabozzi A, Fiorelli A, Fasano M, Papaccio F, et al: SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res. 21:4686–4697. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Güngör C, Zander H, Effenberger KE, Vashist YK, Kalinina T, Izbicki JR, Yekebas E and Bockhorn M: Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer. Cancer Res. 71:5009–5019. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lin, Z., Zhang, L., Zhou, J., & Zheng, J. (2019). Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition. Molecular Medicine Reports, 20, 3735-3745. https://doi.org/10.3892/mmr.2019.10597
MLA
Lin, Z., Zhang, L., Zhou, J., Zheng, J."Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition". Molecular Medicine Reports 20.4 (2019): 3735-3745.
Chicago
Lin, Z., Zhang, L., Zhou, J., Zheng, J."Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition". Molecular Medicine Reports 20, no. 4 (2019): 3735-3745. https://doi.org/10.3892/mmr.2019.10597