Open Access

Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis

  • Authors:
    • Ji‑Won Choi
    • Sung‑Kon Lee
    • Myoung‑Jin Kim
    • Dong‑Gu Kim
    • Joon‑Yeon Shin
    • Ziqi Zhou
    • Il‑Joo Jo
    • Ho‑Joon Song
    • Gi‑Sang Bae
    • Sung‑Joo Park
  • View Affiliations

  • Published online on: September 2, 2019     https://doi.org/10.3892/mmr.2019.10635
  • Pages: 3709-3718
  • Copyright: © Choi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation and fibrosis. Currently, there are no drugs for the treatment of pancreatic fibrosis associated with CP. Piperine, a natural alkaloid found in black pepper, has been reported to show anti‑inflammatory, anti‑oxidative, and antitumor activities. Although piperine exhibits numerous properties in regards to the regulation of diverse diseases, the effects of piperine on CP have not been established. To investigate the effects of piperine on CP in vivo, we induced CP in mice through the repetitive administration of cerulein (50 µg/kg) six times at 1‑h intervals, 5 times per week, for a total of 3 weeks. In the pre‑treatment groups, piperine (1, 5, or 10 mg/kg) or corn oil were administrated orally at 1 h before the first cerulein injection, once a day, 5 times a week, for a total of 3 weeks. In the post‑treatment groups, piperine (10 mg/kg) or corn oil was administered orally at 1 or 2 week after the first cerulein injection. Pancreases were collected for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the anti‑fibrogenic effects and regulatory mechanisms of piperine. Piperine treatment significantly inhibited histological damage in the pancreas, increased the pancreatic acinar cell survival, reduced collagen deposition and reduced pro‑inflammatory cytokines and chemokines. In addition, piperine treatment reduced the expression of fibrotic mediators, such as α‑smooth muscle actin (α‑SMA), collagen, and fibronectin 1 in the pancreas and PSCs. Moreover, piperine treatment reduced the production of transforming growth factor (TGF)‑β in the pancreas and PSCs. Furthermore, piperine treatment inhibited TGF‑β‑induced pSMAD2/3 activation but not pSMAD1/5 in the PSCs. These findings suggest that piperine treatment ameliorates pancreatic fibrosis by inhibiting TGF‑β/SMAD2/3 signaling during CP.

References

1 

Apte M, Pirola R and Wilson J: The fibrosis of chronic pancreatitis: New insights into the role of pancreatic stellate cells. Antioxid Redox Signal. 15:2711–2722. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Hobbs PM, Johnson WG and Graham DY: Management of pain in chronic pancreatitis with emphasis on exogenous pancreatic enzymes. World J Gastrointest Pharmacol Ther. 7:370–386. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Yang AL, Vadhavkar S, Singh G and Omary MB: Epidemiology of alcohol-related liver and pancreatic disease in the United States. Arch Intern Med. 168:649–656. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Robles-Diaz G, Vargas F, Uscanga L and Fernández-del Castillo C: Chronic pancreatitis in Mexico City. Pancreas. 5:479–483. 1990. View Article : Google Scholar : PubMed/NCBI

5 

Hirota M, Shimosegawa T, Masamune A, Kikuta K, Kume K, Hamada S, Kihara Y, Satoh A, Kimura K, Tsuji I, et al: The sixth nationwide epidemiological survey of chronic pancreatitis in Japan. Pancreatology. 12:79–84. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Miyake H, Harada H, Ochi K, Kunichika K, Tanaka J and Kimura I: Prognosis and prognostic factors in chronic pancreatitis. Dig Dis Sci. 34:449–455. 1989. View Article : Google Scholar : PubMed/NCBI

7 

Ammann RW, Akovbiantz A, Largiader F and Schueler G: Course and outcome of chronic pancreatitis. Longitudinal study of a mixed medical-surgical series of 245 patients. Gastroenterology. 86:820–828. 1984.PubMed/NCBI

8 

Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A and Domellöf L: Pancreatitis and the risk of pancreatic cancer. International pancreatitis study group. N Engl J Med. 328:1433–1437. 1993. View Article : Google Scholar : PubMed/NCBI

9 

Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH, Pirola RC, McCaughan GW, Ramm GA and Wilson JS: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol. 155:1087–1095. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M and Lerch MM: Animal models for investigating chronic pancreatitis. Fibrogenesis Tissue Repair. 4:262011. View Article : Google Scholar : PubMed/NCBI

11 

Turner R: Acute pancreatitis is a chronic disease. Pancreatic Dis Ther. 3:1182013. View Article : Google Scholar

12 

Wehr AY, Furth EE, Sangar V, Blair IA and Yu KH: Analysis of the human pancreatic stellate cell secreted proteome. Pancreas. 40:557–566. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Schneider A, Löhr JM and Singer MV: The M-ANNHEIM classification of chronic pancreatitis: Introduction of a unifying classification system based on a review of previous classifications of the disease. J Gastroenterol. 42:101–119. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Lankisch PG, Löhr-Happe A, Otto J and Creutzfeldt W: Natural course in chronic pancreatitis. Pain, exocrine and endocrine pancreatic insufficiency and prognosis of the disease. Digestion. 54:148–155. 1993. View Article : Google Scholar : PubMed/NCBI

15 

Singh YN: Kava: An overview. J Ethnopharmacol. 37:13–45. 1992. View Article : Google Scholar : PubMed/NCBI

16 

Srinivasan K: Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit Rev Food Sci Nutr. 47:735–748. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Bae GS, Kim MS, Jeong J, Lee HY, Park KC, Koo BS, Kim BJ, Kim TH, Lee SH, Hwang SY, et al: Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases. Biochem Biophys Res Commun. 410:382–390. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Bae GS, Kim MS, Jung WS, Seo SW, Yun SW, Kim SG, Park RK, Kim EC, Song HJ and Park SJ: Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol. 642:154–162. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Van Laethem JL, Robberecht P, Résibois A and Deviére J: Transforming growth factor beta promotes development of fibrosis after repeated courses of acute pancreatitis in mice. Gastroenterology. 110:576–582. 1996. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Masamune A, Watanabe T, Kikuta K and Shimosegawa T: Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7 (11 Suppl). S48–S54. 2009. View Article : Google Scholar

22 

Vinokurova LV, Zhivaeva NS, Tsaregorodtseva TM and Serova TI: A cytokine status in chronic alcoholic and biliary pancreatitis. Ter Arkh. 78:57–60. 2006.(In Russian). PubMed/NCBI

23 

Zhang H, Neuhöfer P, Song L, Rabe B, Lesina M, Kurkowski MU, Treiber M, Wartmann T, Regnér S, Thorlacius H, et al: IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest. 123:1019–1031. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC, Fine DR and Iredale JP: Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol. 160:1787–1798. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Vogelmann R, Ruf D, Wagner M, Adler G and Menke A: Effects of fibrogenic mediators on the development of pancreatic fibrosis in a TGF-beta1 transgenic mouse model. Am J Physiol Gastrointest Liver Physiol. 280:G164–G172. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Gressner AM, Weiskirchen R, Breitkopf K and Dooley S: Roles of TGF-beta in hepatic fibrosis. Front Biosci. 7:d793–d807. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Chung H, Ramachandran R, Hollenberg MD and Muruve DA: Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. J Biol Chem. 288:37319–37331. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Fu M, Sun ZH and Zuo HC: Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull. 33:598–603. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Bang JS, Oh DH, Choi HM, Sur BJ, Lim SJ, Kim JY, Yang HI, Yoo MC, Hahm DH and Kim KS: Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther. 11:R492009. View Article : Google Scholar : PubMed/NCBI

30 

Taqvi SI, Shah AJ and Gilani AH: Blood pressure lowering and vasomodulator effects of piperine. J Cardiovasc Pharmacol. 52:452–458. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Mehmood MH and Gilani AH: Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J Med Food. 13:1086–1096. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Diwan V, Poudyal H and Brown L: Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats. Cell Biochem Biophys. 67:297–304. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Durgaprasad S, Pai CG, Vasanthkuma r, Alvres JF and Namitha S: A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res. 122:315–318. 2005.PubMed/NCBI

34 

Schneider E, Schmid-Kotsas A, Zhao J, Weidenbach H, Schmid RM, Menke A, Adler G, Waltenberger J, Grünert A and Bachem MG: Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol. 281:C532–C543. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Apte MV, Pirola RC and Wilson JS: Pancreatic stellate cells: A starring role in normal and diseased pancreas. Front Physiol. 3:3442012. View Article : Google Scholar : PubMed/NCBI

37 

Chen B, Li J, Fellows GF, Sun Z and Wang R: Maintaining human fetal pancreatic stellate cell function and proliferation require β1 integrin and collagen I matrix interactions. Oncotarget. 6:14045–14059. 2015.PubMed/NCBI

38 

Prud'homme GJ: Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest. 87:1077–1091. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Czaja MJ, Weiner FR, Flanders KC, Giambrone MA, Wind R, Biempica L and Zern MA: In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol. 108:2477–2482. 1989. View Article : Google Scholar : PubMed/NCBI

40 

Ma ZG, Yuan YP, Zhang X, Xu SC, Wang SS and Tang QZ: Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine. 18:179–187. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Yang L, Shen J, He S, Hu G, Shen J, Wang F, Xu L, Dai W, Xiong J, Ni J, et al: L-cysteine administration attenuates pancreatic fibrosis induced by TNBS in rats by inhibiting the activation of pancreatic stellate cell. PLoS One. 7:e318072012. View Article : Google Scholar : PubMed/NCBI

42 

Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G and Ten Dijke P; IT-LIVER Consortium, : TGF-β signaling and liver disease. FEBS J. 283:2219–2232. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Ohnishi H, Miyata T, Yasuda H, Satoh Y, Hanatsuka K, Kita H, Ohashi A, Tamada K, Makita N, Iiri T, et al: Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-beta1 regulation of pancreatic stellate cellular functions. J Biol Chem. 279:8873–8878. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Xu L, Zheng N, He Q, Li R, Zhang K and Liang T: Puerarin, isolated from Pueraria lobata (Willd.), protects against hepatotoxicity via specific inhibition of the TGF-β1/Smad signaling pathway, thereby leading to anti-fibrotic effect. Phytomedicine. 20:1172–1179. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Choi, J., Lee, S., Kim, M., Kim, D., Shin, J., Zhou, Z. ... Park, S. (2019). Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis. Molecular Medicine Reports, 20, 3709-3718. https://doi.org/10.3892/mmr.2019.10635
MLA
Choi, J., Lee, S., Kim, M., Kim, D., Shin, J., Zhou, Z., Jo, I., Song, H., Bae, G., Park, S."Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis". Molecular Medicine Reports 20.4 (2019): 3709-3718.
Chicago
Choi, J., Lee, S., Kim, M., Kim, D., Shin, J., Zhou, Z., Jo, I., Song, H., Bae, G., Park, S."Piperine ameliorates the severity of fibrosis via inhibition of TGF‑β/SMAD signaling in a mouse model of chronic pancreatitis". Molecular Medicine Reports 20, no. 4 (2019): 3709-3718. https://doi.org/10.3892/mmr.2019.10635