Open Access

Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma

  • Authors:
    • Fang‑Fang Chen
    • Shi‑Rong Zhang
    • Hao Peng
    • Yun‑Zhao Chen
    • Xiao‑Bin Cui
  • View Affiliations

  • Published online on: August 23, 2019     https://doi.org/10.3892/mmr.2019.10608
  • Pages: 3649-3660
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The main purpose of the present study was to recognize the integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma (ESCC). The mRNA gene expression profile data of GSE38129 were downloaded from the Gene Expression Omnibus database, which included 30 ESCC and 30 normal tissue samples. The differentially expressed genes (DEGs) between ESCC and normal samples were identified using the GEO2R tool. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify the functions and related pathways of the genes. The protein‑protein interaction (PPI) network of these DEGs was constructed with the Search Tool for the Retrieval of Interacting Genes and visualized with a molecular complex detection plug‑in via Cytoscape. The top five important modules were selected from the PPI network. A total of 928 DEGs, including ephrin‑A1 (EFNA1), collagen type IV α1 (COL4A1),  C‑X‑C chemokine receptor 2 (CXCR2), adrenoreceptor β2 (ADRB2), P2RY14, BUB1B, cyclin A2 (CCNA2), checkpoint kinase 1 (CHEK1), TTK, pituitary tumor transforming gene 1 (PTTG1) and COL5A1, including 498 upregulated genes, were mainly enriched in the ‘cell cycle’, ‘DNA replication’ and ‘mitotic nuclear division’, whereas 430 downregulated genes were enriched in ‘oxidation‑reduction process’, ‘xenobiotic metabolic process’ and ‘cell‑cell adhesion’. The KEGG analysis revealed that ‘ECM‑receptor interaction’, ‘cell cycle’ and ‘p53 signaling pathway’ were the most relevant pathways. According to the degree of connectivity and adjusted P‑value, eight core genes were selected, among which those with the highest correlation were CHEK1, BUB1B, PTTG1, COL4A1 and CXCR2. Gene Expression Profiling Interactive Analysis in The Cancer Genome Atlas database for overall survival (OS) was applied among these genes and revealed that EFNA1 and COL4A1 were significantly associated with a short OS in 182 patients. Immunohistochemical results revealed that the expression of PTTG1 in esophageal carcinoma tissues was higher than that in normal tissues. Therefore, these genes may serve as crucial predictors for the prognosis of ESCC.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Cui XB, Zhang SM, Xu YX, Dang HW, Liu CX, Wang LH, Yang L, Hu JM, Liang WH, Jiang JF, et al: PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target involved in esophageal squamous cell carcinoma. J Transl Med. 14:1372016. View Article : Google Scholar : PubMed/NCBI

3 

Ma S, Bao JY, Kwan PS, Chan YP, Tong CM, Fu L, Zhang N, Tong AH, Qin YR, Tsao SW, et al: Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma. Gastroenterology. 143:675–686 e612. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Zhang J, Li S, Shang Z, Lin S, Gao P, Zhang Y, Hou S, Mo S, Cao W, Dong Z, et al: Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells. Oncotarget. 8:29125–29137. 2017.PubMed/NCBI

5 

Hers I, Vincent EE and Tavare JM: Akt signalling in health and disease. Cell Signal. 23:1515–1527. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Durán-Prado M, Gahete MD, Hergueta-Redondo M, Martínez-Fuentes AJ, Cordóba-Chacón J, Palacios J, Gracia-Navarro F, Moreno-Bueno G, Malagón MM, Luque RM and Castaño JP: The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene. 31:2049–2061. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Wang J, Lu Y, Wang J, Koch AE, Zhang J and Taichman RS: CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res. 68:10367–10376. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Matsuoka T and Yashiro M: The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel). 6:1441–1463. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Okawa T, Michaylira CZ, Kalabis J, Stairs DB, Nakagawa H, Andl CD, Johnstone CN, Klein-Szanto AJ, El-Deiry WS, Cukierman E, et al: The functional interplay between EGFR overexpression, hTERT activation, and p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion, and differentiation. Genes Dev. 21:2788–2803. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Hu N, Wang C, Clifford RJ, Yang HH, Su H, Wang L, Wang Y, Xu Y, Tang ZZ, Ding T, et al: Integrative genomics analysis of genes with biallelic loss and its relation to the expression of mRNA and micro-RNA in esophageal squamous cell carcinoma. BMC Genomics. 16:7322015. View Article : Google Scholar : PubMed/NCBI

11 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Altermann E and Klaenhammer TR: Pathwayvoyager: Pathway mapping using the kyoto encyclopedia of genes and genomes (KEGG) database. BMC Genomics. 6:602005. View Article : Google Scholar : PubMed/NCBI

13 

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35:W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808–D815. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

16 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Cui XB, Pang XL, Li S, Jin J, Hu JM, Yang L, Liu CX, Li L, Wen SJ, Liang WH, et al: Elevated expression patterns and tight correlation of the PLCE1 and NF-κB signaling in Kazakh patients with esophageal carcinoma. Med Oncol. 31:7912014. View Article : Google Scholar : PubMed/NCBI

18 

Holzman LB, Marks RM and Dixit VM: A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 10:5830–5838. 1990. View Article : Google Scholar : PubMed/NCBI

19 

Abraham S, Knapp DW, Cheng L, Snyder PW, Mittal SK, Bangari DS, Kinch M, Wu L, Dhariwal J and Mohammed SI: Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res. 12:353–360. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Nakamura R, Kataoka H, Sato N, Kanamori M, Ihara M, Igarashi H, Ravshanov S, Wang YJ, Li ZY, Shimamura T, et al: EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci. 96:42–47. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Yamamoto H, Tei M, Uemura M, Takemasa I, Uemura Y, Murata K, Fukunaga M, Ohue M, Ohnishi T, Ikeda K, et al: Ephrin-A1 mRNA is associated with poor prognosis of colorectal cancer. Int J Oncol. 42:549–555. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Wada H, Yamamoto H, Kim C, Uemura M, Akita H, Tomimaru Y, Hama N, Kawamoto K, Kobayashi S, Eguchi H, et al: Association between ephrin-A1 mRNA expression and poor prognosis after hepatectomy to treat hepatocellular carcinoma. Int J Oncol. 45:1051–1058. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Désert R, Mebarki S, Desille M, Sicard M, Lavergne E, Renaud S, Bergeat D, Sulpice L, Perret C, Turlin B, et al: ‘Fibrous nests’ in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol. 81:195–207. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Salem O, Erdem N, Jung J, Münstermann E, Wörner A, Wilhelm H, Wiemann S and Körner C: The highly expressed 5′isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics. 17:5662016. View Article : Google Scholar : PubMed/NCBI

25 

Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R and Muharram BA: Cell cycle arrest and apoptosis induction via modulation of mitochondrial integrity by Bcl-2 family members and caspase dependence in Dracaena cinnabari-treated H400 human oral squamous cell carcinoma. Biomed Res Int. 2016:49040162016. View Article : Google Scholar : PubMed/NCBI

26 

He Y, Liu J, Zhao Z and Zhao H: Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. Dis Esophagus. 30:1–8. 2017. View Article : Google Scholar

27 

Chan TF, Poon A, Basu A, Addleman NR, Chen J, Phong A, Byers PH, Klein TE and Kwok PY: Natural variation in four human collagen genes across an ethnically diverse population. Genomics. 91:307–314. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Yue Y, Song M, Qiao Y, Li P, Yuan Y, Lian J, Wang S and Zhang Y: Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget. 8:105222–105237. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Abdel-Fatah TM, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, et al: Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol. 9:569–585. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Kim MK, James J and Annunziata CM: Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer. 15:1962015. View Article : Google Scholar : PubMed/NCBI

31 

Parikh RA, Appleman LJ, Bauman JE, Sankunny M, Lewis DW, Vlad A and Gollin SM: Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas. Genes Chromosomes Cancer. 53:25–37. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Xiang W, Wu X, Huang C, Wang M, Zhao X, Luo G, Li Y, Jiang G, Xiao X and Zeng F: PTTG1 regulated by miR-146-3p promotes bladder cancer migration, invasion, metastasis and growth. Oncotarget. 8:664–678. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Feng W, Xiaoyan X, Shenglei L, Hongtao L and Guozhong J: PTTG1 cooperated with GLI1 leads to epithelial-mesenchymal transition in esophageal squamous cell cancer. Oncotarget. 8:92388–92400. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Kaistha BP, Honstein T, Müller V, Bielak S, Sauer M, Kreider R, Fassan M, Scarpa A, Schmees C, Volkmer H, et al: Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br J Cancer. 111:1780–1787. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Miao R, Wu Y, Zhang H, Zhou H, Sun X, Csizmadia E, He L, Zhao Y, Jiang C, Miksad RA, et al: Utility of the dual-specificity protein kinase TTK as a therapeutic target for intrahepatic spread of liver cancer. Sci Rep. 6:331212016. View Article : Google Scholar : PubMed/NCBI

36 

Fu X, Chen G, Cai ZD, Wang C, Liu ZZ, Lin ZY, Wu YD, Liang YX, Han ZD, Liu JC and Zhong WD: Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. Onco Targets Ther. 9:2211–2220. 2016.PubMed/NCBI

37 

Chen H, Lee J, Kljavin NM, Haley B, Daemen A, Johnson L and Liang Y: Requirement for BUB1B/BUBR1 in tumor progression of lung adenocarcinoma. Genes Cancer. 6:106–118. 2015.PubMed/NCBI

38 

Zhang Y, Xu Y, Li Z, Zhu Y, Wen S, Wang M, Lv H, Zhang F and Tian Z: Identification of the key transcription factors in esophageal squamous cell carcinoma. J Thoracic Dis. 10:148–161. 2018. View Article : Google Scholar

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, F., Zhang, S., Peng, H., Chen, Y., & Cui, X. (2019). Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma. Molecular Medicine Reports, 20, 3649-3660. https://doi.org/10.3892/mmr.2019.10608
MLA
Chen, F., Zhang, S., Peng, H., Chen, Y., Cui, X."Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma". Molecular Medicine Reports 20.4 (2019): 3649-3660.
Chicago
Chen, F., Zhang, S., Peng, H., Chen, Y., Cui, X."Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma". Molecular Medicine Reports 20, no. 4 (2019): 3649-3660. https://doi.org/10.3892/mmr.2019.10608