Open Access

Synergistic effect of STAT3‑targeted small interfering RNA and AZD0530 against glioblastoma in vitro and in vivo

  • Authors:
    • Qingjun Liu
    • Leibo Wang
    • David Li
    • Jingxia Zhao
    • Shen Chen
    • Jialin Li
  • View Affiliations

  • Published online on: August 21, 2019     https://doi.org/10.3892/mmr.2019.10596
  • Pages: 3625-3632
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of this study was to explore the synergistic effect of signal transducer and activator of transcription 3 (STAT3)‑targeted small interfering (si)RNA and AZD0530 against glioblastoma in vitro and in vivo. Glioblastoma cell lines U87 and U251 were divided into four groups and treated with control, LV‑STAT3 siRNA, AZD0530, and combined LV‑STAT3 siRNA with AZD0530, respectively. The proliferation and apoptotic capacity of glioblastoma cells was assessed by Cell Counting Kit‑8 and double staining flow cytometry assays, respectively. Additionally, the potential effect of LV‑STAT3 siRNA and AZD0530 on glioblastoma was evaluated in vivo. Images were captured of the tumor formation in mice every week. Following three weeks of treatment, NMR scan and immunohistochemistry were performed. The treatment of combined LV‑STAT3 siRNA and AZD0530 was more effective in inhibiting proliferation and inducing apoptosisof glioblastoma cells in comparison with the treatment of either LV‑STAT3 siRNA or AZD0530 alone. Although LV‑STAT3 siRNA or AZD0530 treatment alone suppressed tumor growth in mice, the combined treatment had a more significant effect than the treatment of LV‑STAT3 siRNA or AZD0530 alone. According to the results of both in vitro and in vivo assays, a combined therapy of LV‑STAT3 siRNA with AZD0530 could enhance therapeutic effects on glioblastoma, supporting the idea that the combination of LV‑STAT3 siRNA and AZD0530 could serve as a novel and effective strategy to combat glioblastoma.

References

1 

Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, et al: Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Gray GK, McFarland BC, Nozell SE and Benveniste EN: NF-κB and STAT3 in glioblastoma: Therapeutic targets coming of age. Expert Rev Neurother. 14:1293–1306. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Gulavita S, Hao C, et al: Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J Clin Oncol. 22:1583–1588. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Hide T, Takezaki T, Nakamura H, Kuratsu J and Kondo T: Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol. 25:67–72. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Yang F, Brown C, Buettner R, Hedvat M, Starr R, Scuto A, Schroeder A, Jensen M and Jove R: Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3. Mol Cancer Ther. 9:953–962. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Liu Y, Li C and Lin J: STAT3 as a therapeutic target for glioblastoma. Anticancer Agents Med Chem. 10:512–519. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ, Olson T, Jalkanen SE, et al: Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 366:1905–1913. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, et al: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 307:101–108. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD, McCormick F, Shokat KM and Weiss WA: EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal. 2:ra42009. View Article : Google Scholar : PubMed/NCBI

11 

Molina JR, Foster NR, Reungwetwattana T, Nelson GD, Grainger AV, Steen PD, Stella PJ, Marks R, Wright J and Adjei AA: A phase II trial of the Src-kinase inhibitor saracatinib after four cycles of chemotherapy for patients with extensive stage small cell lung cancer: NCCTG trial N-0621. Lung Cancer. 85:245–250. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Lin M, Yao Z, Zhao N and Zhang C: TLK2 enhances aggressive phenotypes of glioblastoma cells through the activation of SRC signaling pathway. Cancer Biol Ther. 20:101–108. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, Kaufman AC, Rosenberg BJ, Sekine-Konno T, Varma P, et al: A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer's disease. Alzheimers Res Ther. 7:352015. View Article : Google Scholar : PubMed/NCBI

14 

De Luca A, D'Alessio A, Gallo M, Maiello MR, Bode AM and Normanno N: Src and CXCR4 are involved in the invasiveness of breast cancer cells with acquired resistance to lapatinib. Cell Cycle. 13:148–156. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Liu J, Xu X, Feng X, Zhang B and Wang J: Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251. J Exp Clin Cancer Res. 30:802011. View Article : Google Scholar : PubMed/NCBI

16 

Baumann BC, Dorsey JF, Benci JL, Joh DY and Kao GD: Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme. J Vis Exp:. (pii): 40892012.PubMed/NCBI

17 

Sansone P and Bromberg J: Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 30:1005–1014. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Wadghiri YZ, Li J, Wang J, Hoang DM, Sun Y, Xu H, Tsui W, Li Y, Boutajangout A, Wang A, et al: Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging. PLoS One. 8:e570972013. View Article : Google Scholar : PubMed/NCBI

19 

Tomayko MM and Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 24:148–154. 1989. View Article : Google Scholar : PubMed/NCBI

20 

Alvarez JV and Frank DA: Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 3:1045–1050. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L and Bromberg J: Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res. 12:R802010. View Article : Google Scholar : PubMed/NCBI

22 

Sanseverino I, Purificato C, Gauzzi MC and Gessani S: Revisiting the specificity of small molecule inhibitors: The example of stattic in dendritic cells. Chem Biol. 19:1213–1216. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Barre B, Vigneron A and Coqueret O: The STAT3 transcription factor is a target for the Myc and riboblastoma proteins on the Cdc25A promoter. J Biol Chem. 280:15673–15681. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Rao DD, Vorhies JS, Senzer N and Nemunaitis J: siRNA vs. shRNA: Similarities and differences. Adv Drug Deliv Rev. 61:746–759. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Gao LF, Xu DQ, Wen LJ, Zhang XY, Shao YT and Zhao XJ: Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells. Acta Pharmacol Sin. 26:377–383. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Firer MA and Gellerman G: Targeted drug delivery for cancer therapy: The other side of antibodies. J Hematol Oncol. 5:702012. View Article : Google Scholar : PubMed/NCBI

27 

Formisano L, Nappi L, Rosa R, Marciano R, D'Amato C, D'Amato V, Damiano V, Raimondo L, Iommelli F, Scorziello A, et al: Epidermal growth factor-receptor activation modulates Src-dependent resistance to lapatinib in breast cancer models. Breast Cancer Res. 16:R452014. View Article : Google Scholar : PubMed/NCBI

28 

de Wispelaere M, LaCroix AJ and Yang PL: The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. J Virol. 87:7367–7381. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Bourke LT, Knight RA, Latchman DS, Stephanou A and McCormick J: Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy. JAKSTAT. 2:e256662013.PubMed/NCBI

30 

Chan SL and Yu VC: Proteins of the bcl-2 family in apoptosis signalling: From mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 31:119–128. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, Naus CC and Sin WC: Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 75:539–548. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Coleman CB, McGraw JE, Feldman ER, Roth AN, Keyes LR, Grau KR, Cochran SL, Waldschmidt TJ, Liang C, Forrest JC and Tibbetts SA: A gammaherpesvirus Bcl-2 ortholog blocks B cell receptor-mediated apoptosis and promotes the survival of developing B cells in vivo. PLoS Pathog. 10:e10039162014. View Article : Google Scholar : PubMed/NCBI

33 

Abdalla F, Nookala A, Padhye SB, Kumar A and Bhat HK: 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) suppresses HIV1-gp120 mediated production of IL6 and IL8 but not CCL5. Sci Rep. 7:81292017. View Article : Google Scholar : PubMed/NCBI

34 

Guo Y, Zang Y, Lv L, Cai F, Qian T, Zhang G and Feng Q: [Corrigendum] IL-8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NF-κB pathway in prostate cancer. Mol Med Rep. 19:29702019.PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Q., Wang, L., Li, D., Zhao, J., Chen, S., & Li, J. (2019). Synergistic effect of STAT3‑targeted small interfering RNA and AZD0530 against glioblastoma in vitro and in vivo. Molecular Medicine Reports, 20, 3625-3632. https://doi.org/10.3892/mmr.2019.10596
MLA
Liu, Q., Wang, L., Li, D., Zhao, J., Chen, S., Li, J."Synergistic effect of STAT3‑targeted small interfering RNA and AZD0530 against glioblastoma in vitro and in vivo". Molecular Medicine Reports 20.4 (2019): 3625-3632.
Chicago
Liu, Q., Wang, L., Li, D., Zhao, J., Chen, S., Li, J."Synergistic effect of STAT3‑targeted small interfering RNA and AZD0530 against glioblastoma in vitro and in vivo". Molecular Medicine Reports 20, no. 4 (2019): 3625-3632. https://doi.org/10.3892/mmr.2019.10596