Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis

  • Authors:
    • Lei‑Lei Gao
    • Fei Xu
    • Zhen Jin
    • Xiao‑Yan Ying
    • Jin‑Wei Liu
  • View Affiliations

  • Published online on: August 22, 2019     https://doi.org/10.3892/mmr.2019.10605
  • Pages: 3573-3582
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Microtubule‑severing proteins (MTSPs) are a group of microtubule‑associated proteins essential for multiple microtubule‑related processes, including mitosis and meiosis. Katanin p60 ATPase‑containing subunit A‑like 1 (p60 katanin‑like 1) is an MTSP that maintains the density of spindle microtubules at the poles in mitotic cells; however, to date, there have been no studies about its role in female meiosis. Using in vitro‑matured (IVM) oocytes as a model, it was first revealed that p60 katanin‑like 1 was predominant in the ovaries and oocytes, indicating its essential roles in oocyte meiosis. It was also revealed that p60 katanin‑like 1 was concentrated at the spindle poles and co‑localized and interacted with γ‑tubulin, indicating that it may be involved in pole organization. Next, specific siRNA was used to deplete p60 katanin‑like 1; the spindle organization was severely disrupted and characterized by an abnormal width:length ratio, multipolarity and extra aster microtubules out of the main spindles. Finally, it was determined that p60 katanin‑like 1 knockdown retarded oocyte meiosis, reduced fertilization, and caused abnormal mitochondrial distribution. Collectively, these results indicated that p60 katanin‑like 1 is essential for oocyte meiosis by ensuring the integrity of the spindle poles.

References

1 

Sferra A, Fattori F, Rizza T, Flex E, Bellacchio E, Bruselles A, Petrini S, Cecchetti S, Teson M, Restaldi F, et al: Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum Mol Genet. 27:1892–1904. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Luscan R, Mechaussier S, Paul A, Tian G, Gerard X, Defoort-Dellhemmes S, Loundon N, Audo I, Bonnin S, LeGargasson JF, et al: Mutations in TUBB4B cause a distinctive sensorineural disease. Am J Hum Genet. 101:1006–1012. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Feng R, Sang Q, Kuang Y, Sun X, Yan Z, Zhang S, Shi J, Tian G, Luchniak A, Fukuda Y, et al: Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med. 374:223–232. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Martin M and Akhmanova A: Coming into focus: Mechanisms of microtubule minus-end organization. Trends Cell Biol. 28:574–588. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Aher A and Akhmanova A: Tipping microtubule dynamics, one protofilament at a time. Curr Opin Cell Biol. 50:86–93. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Akhmanova A and Steinmetz MO: Control of microtubule organization and dynamics: Two ends in the limelight. Nat Rev Mol Cell Biol. 16:711–726. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Huynh W and Vale RD: Disease-associated mutations in human BICD2 hyperactivate motility of dynein-dynactin. J Cell Biol. 216:3051–3060. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Lewis WR, Malarkey EB, Tritschler D, Bower R, Pasek RC, Porath JD, Birket SE, Saunier S, Antignac C, Knowles MR, et al: Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease. PLoS Genet. 12:e10062202016. View Article : Google Scholar : PubMed/NCBI

9 

Decker JM, Kruger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E and Mandelkow EM: The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep. 17:552–569. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Frickey T and Lupas AN: Phylogenetic analysis of AAA proteins. J Struct Biol. 146:2–10. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Vale RD: AAA proteins. Lords of the ring. J Cell Biol. 150:F13–E19. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Buster D, McNally K and McNally FJ: Katanin inhibition prevents the redistribution of gamma-tubulin at mitosis. J Cell Sci. 115:1083–1092. 2002.PubMed/NCBI

13 

Sharp DJ and Ross JL: Microtubule-severing enzymes at the cutting edge. J Cell Sci. 125:2561–2569. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Zhang D, Rogers GC, Buster DW and Sharp DJ: Three microtubule severing enzymes contribute to the ‘Pacman-flux’ machinery that moves chromosomes. J Cell Biol. 177:231–242. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Zhang D, Grode KD, Stewman SF, Diaz-Valencia JD, Liebling E, Rath U, Riera T, Currie JD, Buster DW, Asenjo AB, et al: Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat Cell Biol. 13:361–370. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Srayko M, O'Toole ET, Hyman AA and Muller-Reichert T: Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr Biol. 16:1944–1949. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Errico A, Ballabio A and Rugarli EI: Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 11:153–163. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Banks G, Lassi G, Hoerder-Suabedissen A, Tinarelli F, Simon MM, Wilcox A, Lau P, Lawson TN, Johnson S, Rutman A, et al: A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Mol Psychiatry. 23:713–722. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Mishra-Gorur K, Caglayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, et al: Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron. 84:1226–1239. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Mao CX, Xiong Y, Xiong Z, Wang Q, Zhang YQ and Jin S: Microtubule-severing protein Katanin regulates neuromuscular junction development and dendritic elaboration in Drosophila. Development. 141:1064–1074. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Stewart A, Tsubouchi A, Rolls MM, Tracey WD and Sherwood NT: Katanin p60-like1 promotes microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila. J Neurosci. 32:11631–11642. 2012. View Article : Google Scholar : PubMed/NCBI

22 

O'Donnell L, Rhodes D, Smith SJ, Merriner DJ, Clark BJ, Borg C, Whittle B, O'Connor AE, Smith LB, McNally FJ, et al: An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet. 8:e10026982012. View Article : Google Scholar : PubMed/NCBI

23 

Smith LB, Milne L, Nelson N, Eddie S, Brown P, Atanassova N, O'Bryan MK, O'Donnell L, Rhodes D, Wells S, et al: KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility. PLoS Genet. 8:e10026972012. View Article : Google Scholar : PubMed/NCBI

24 

Chen B, Zhang Z, Sun X, Kuang Y, Mao X, Wang X, Yan Z, Li B, Xu Y, Yu M, et al: Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet. 101:609–615. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Nguyen AL, Marin D, Zhou A, Gentilello AS, Smoak EM, Cao Z, Fedick A, Wang Y, Taylor D, Scott RT Jr, et al: Identification and characterization of Aurora kinase B and C variants associated with maternal aneuploidy. Mol Hum Reprod. 23:406–416. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Caburet S, Arboleda VA, Llano E, Overbeek PA, Barbero JL, Oka K, Harrison W, Vaiman D, Ben-Neriah Z, García-Tuñón I, et al: Mutant cohesin in premature ovarian failure. N Engl J Med. 370:943–949. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Sonbuchner TM, Rath U and Sharp DJ: KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle. 9:2403–2411. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Pimenta-Marques A, Bento I, Lopes CA, Duarte P, Jana SC and Bettencourt-Dias M: A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science. 353:aaf48662016. View Article : Google Scholar : PubMed/NCBI

29 

Connolly AA, Osterberg V, Christensen S, Price M, Lu C, Chicas-Cruz K, Lockery S, Mains PE and Bowerman B: Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1. Mol Biol Cell. 25:1298–1311. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Kim JS, Kim EJ, Oh JS, Park IC and Hwang SG: CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1. Cancer Res. 73:6667–6678. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Patel H, Zich J, Serrels B, Rickman C, Hardwick KG, Frame MC and Brunton VG: Kindlin-1 regulates mitotic spindle formation by interacting with integrins and Plk-1. Nat Commun. 4:20562013. View Article : Google Scholar : PubMed/NCBI

32 

Eot-Houllier G, Venoux M, Vidal-Eychenie S, Hoang MT, Giorgi D and Rouquier S: Plk1 regulates both ASAP localization and its role in spindle pole integrity. J Biol Chem. 285:29556–29568. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Zhou CX, Shi LY, Li RC, Liu YH, Xu BQ, Liu JW, Yuan B, Yang ZX, Ying XY and Zhang D: GTPase-activating protein Elmod2 is essential for meiotic progression in mouse oocytes. Cell Cycle. 16:852–860. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Zhang XL, Liu P, Yang ZX, Zhao JJ, Gao LL, Yuan B, Shi LY, Zhou CX, Qiao HF, Liu YH, et al: Pnma5 is essential to the progression of meiosis in mouse oocytes through a chain of phosphorylation. Oncotarget. 8:96809–96825. 2017.PubMed/NCBI

35 

Dinkelmann MV, Zhang H, Skop AR and White JG: SPD-3 is required for spindle alignment in Caenorhabditis elegans embryos and localizes to mitochondria. Genetics. 177:1609–1620. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Kong XW, Wang DH, Zhou CJ, Zhou HX and Liang CG: Loss of function of KIF1B impairs oocyte meiotic maturation and early embryonic development in mice. Mol Reprod Dev. 83:1027–1040. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Maccarinelli F, Regoni M, Carmona F, Poli M, Meyron-Holtz EG and Arosio P: Mitochondrial ferritin deficiency reduces male fertility in mice. Reprod Fertil Dev. 29:2005–2010. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Wang M, Huang YP, Wu H, Song K, Wan C, Chi AN, Xiao YM and Zhao XY: Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice. Peer J. 5:e33392017. View Article : Google Scholar : PubMed/NCBI

39 

May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferre-L'Hotellier V, Moriniere C, Descamps P, Procaccio V and Reynier P: Ovarian ageing: The role of mitochondria in oocytes and follicles. Hum Reprod Update. 22:725–743. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, et al: Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 14:887–895. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Bartolak-Suki E, Imsirovic J, Nishibori Y, Krishnan R and Suki B: Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci. 18(pii): E18122017. View Article : Google Scholar : PubMed/NCBI

42 

Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wang C, Du W, Su QP, Zhu M, Feng P, Li Y, Zhou Y, Mi N, Zhu Y, Jiang D, et al: Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 25:1108–1120. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Fu C, Jain D, Costa J, Velve-Casquillas G and Tran PT: mmb1p binds mitochondria to dynamic microtubules. Curr Biol. 21:1431–1439. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gao, L., Xu, F., Jin, Z., Ying, X., & Liu, J. (2019). Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis. Molecular Medicine Reports, 20, 3573-3582. https://doi.org/10.3892/mmr.2019.10605
MLA
Gao, L., Xu, F., Jin, Z., Ying, X., Liu, J."Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis". Molecular Medicine Reports 20.4 (2019): 3573-3582.
Chicago
Gao, L., Xu, F., Jin, Z., Ying, X., Liu, J."Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis". Molecular Medicine Reports 20, no. 4 (2019): 3573-3582. https://doi.org/10.3892/mmr.2019.10605