Open Access

Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway

  • Authors:
    • Zhi Liu
    • Zewei Yu
    • Hong Chang
    • Yu Wang
    • Haibo Xiang
    • Xianrong Zhang
    • Bin Yu
  • View Affiliations

  • Published online on: August 20, 2019     https://doi.org/10.3892/mmr.2019.10592
  • Pages: 3555-3564
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Calcium phosphate‑based bone substitutes have been widely used for bone repair, augmentation and reconstruction in bone implant surgery. While some of these substitutes have shown excellent biological efficacy, there remains a need to improve the performance of the current calcium phosphate‑based bone substitutes. Strontium ions (Sr) can promote new osteogenesis, inhibit osteoclast formation and increase osteoconductivity. However, the therapeutic effect and mechanism of strontium‑containing α‑calcium sulfate hemihydrate (Sr‑CaS) remains unclear. The present study created bone injuries in rats and treated the injuries with Sr‑CaS. Then Cell Counting Kit‑8, soft agar colony formation, flow cytometry, Transwell and Alizarin Red staining assays were performed to assess the bone cells for their proliferation, growth, apoptosis, invasion, and osteogenic differentiation abilities. The bone reconstructive states were measured by the microCT method, hematoxylin and eosin staining and Masson staining. Bone‑related factors were analyzed by the reverse transcription‑quantitative PCR assay; transforming growth factor (TGF)‑β, mothers against decapentaplegic homolog (Smad)2/3 and β‑catenin expression was measured by western blot analysis and osteocalcin (OCN) expression was assessed by immunohistochemistry. Sr‑CaS did not significantly affect the proliferation and apoptosis of bone marrow stem cells (BMSCs), but did accelerate the migration and osteogenic differentiation of BMSCs in vitro. Sr‑CaS promoted bone repair and significantly increased the values for bone mineral density, bone volume fraction, and trabecular thickness, but decreased trabecular spacing in vivo in a concentration‑­dependent manner. In addition, Sr‑CaS dramatically upregulated the expression levels of genes associated with osteogenic differentiation (Runt‑related transcription factor 2, Osterix, ALP, OCN and bone sialoprotein) both in vitro and in vivo. Sr‑CaS also increased Smad2/3, TGF‑β and phosphorylated‑β‑catenin protein expression in vitro and in vivo. These results indicated that materials that contain 5 or 10% Sr can improve bone defects by regulating the TGF‑β/Smad signaling pathway.

References

1 

Ishack S, Mediero A, Wilder T, Ricci JL and Cronstein BN: Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 105:366–375. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Garcia-Gareta E, Coathup MJ and Blunn GW: Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 81:112–121. 2015. View Article : Google Scholar : PubMed/NCBI

3 

van Houdt CI, Tim CR, Crovace MC, Zanotto ED, Peitl O, Ulrich DJ, Jansen JA, Parizotto NA, Renno AC and van den Beucken JJ: Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. Biomed Mater. 10:0350032015. View Article : Google Scholar : PubMed/NCBI

4 

Lazar MA, Rotaru H, Baldea I, Bosca AB, Berce CP, Prejmerean C, Prodan D and Campian RS: Evaluation of the biocompatibility of new fiber-reinforced composite materials for craniofacial bone reconstruction. J Craniofac Surg. 27:1694–1699. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Sahoo N, Roy ID, Desai AP and Gupta V: Comparative evaluation of autogenous calvarial bone graft and alloplastic materials for secondary reconstruction of cranial defects. J Craniofac Surg. 21:79–82. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Wang W and Yeung KW: Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Mater. 2:224–247. 2017. View Article : Google Scholar

7 

Kenley RA, Yim K, Abrams J, Ron E, Turek T, Marden LJ and Hollinger JO: Biotechnology and bone graft substitutes. Pharm Res. 10:1393–1401. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Barrere F, van Blitterswijk CA and de Groot K: Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 1:317–332. 2006.PubMed/NCBI

9 

Scarano A, Orsini G, Pecora G, Iezzi G, Perrotti V and Piattelli A: Peri-implant bone regeneration with calcium sulfate: A light and transmission electron microscopy case report. Implant Dent. 16:195–203. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Shaffer CD and App GR: The use of plaster of paris in treating infrabony periodontal defects in humans. J Periodontol. 42:685–690. 1971. View Article : Google Scholar : PubMed/NCBI

11 

Hing KA, Wilson LF and Buckland T: Comparative performance of three ceramic bone graft substitutes. Spine J. 7:475–490. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Frenkel SR, Simon J, Alexander H, Dennis M and Ricci JL: Osseointegration on metallic implant surfaces: Effects of microgeometry and growth factor treatment. J Biomed Mater Res. 63:706–713. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Liu T, Zhang X, Li Z and Peng D: Management of combined bone defect and limb-length discrepancy after tibial chronic osteomyelitis. Orthopedics. 34:e363–e367. 2011.PubMed/NCBI

14 

Villar CC and Cochran DL: Regeneration of periodontal tissues: Guided tissue regeneration. Dent Clin North Am. 54:73–92. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Huang Z, Li B, Li Q, Huang Z, Yin B, Ma P, Xu D, Wu Z and Qiu G: Effect of injectable composites of calcium sulfate and hyaluronate in enhancing osteogenesis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 31:730–737. 2017.(In Chinese). PubMed/NCBI

16 

Cao L, Weng W, Chen X, Zhang J, Zhou Q, Cui J, Zhao Y, Shin JW and Su J: Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate. Int J Nanomedicine. 12:1341–1352. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Liu X, Liu HY, Lian X, Shi XL, Wang W, Cui FZ and Zhang Y: Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: In vivo study. J Biomater Appl. 28:12–19. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Yin W, Sun Q and Ma L: Study on the effects of curculigoside on proliferation, differentiation, and calcification of mouse osteoblastic MC3T3-E1 cells. World Sci Technol. 13:852–855. 2011. View Article : Google Scholar

19 

Beuerlein MJ and Mckee MD: Calcium sulfates: What is the evidence? J Orthop Trauma. 24 (Suppl 1):S46–S51. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Bonnelye E, Chabadel A, Saltel F and Jurdic P: Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 42:129–138. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P and Tsouderos Y: An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res. 8:607–615. 1993. View Article : Google Scholar : PubMed/NCBI

22 

Canalis E, Hott M, Deloffre P, Tsouderos Y and Marie PJ: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 18:517–523. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C and Zhang C: Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 10:2269–2281. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Poh PS, Hutmacher DW, Stevens MM and Woodruff MA: Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication. 5:0450052013. View Article : Google Scholar : PubMed/NCBI

25 

Ren J, Blackwood KA, Doustgani A, Poh PP, Steck R, Stevens MM and Woodruff MA: Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A. 104:21092016. View Article : Google Scholar : PubMed/NCBI

26 

Li X, Xu CP, Hou YL, Song JQ, Cui Z, Wang SN, Huang L, Zhou CR and Yu B: A novel resorbable strontium-containing α-calcium sulfate hemihydrate bone substitute: A preparation and preliminary study. Biomed Mater. 9:0450102014. View Article : Google Scholar : PubMed/NCBI

27 

Li Y, Chen SK, Li L, Qin L, Wang XL and Lai YX: Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 3:95–104. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Del Rosario C, Rodriguez-Evora M, Reyes R, Delgado A and Evora C: BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous beta-TCP scaffold for critical-size bone defect repair in rats. Biomed Mater. 10:0450082015. View Article : Google Scholar : PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Yu J, Xu L, Li K, Xie N, Xi Y, Wang Y, Zheng X, Chen X, Wang M and Ye X: Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/smad pathway and osseointegration in osteopenic rabbits. Sci Rep. 7:34402017. View Article : Google Scholar : PubMed/NCBI

31 

Yamada Y, Ueda M, Hibi H and Nagasaka T: Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: From basic research to clinical case study. Cell Transplant. 13:343–355. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N and Richardson JB: Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br. 89:1382–1386. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E and Marcacci M: Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 344:385–386. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Muschler GF, Nakamoto C and Griffith LG: Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 86:1541–1558. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Guanghua Chen, Guizhi Huang, Hao Lin, Haojun Wu and Chen H: Bone marrow mesenchymal stem cell transplatation increases bone mineral density of an ovariectomized rat model of osteoporosis. Chin J Tissue Engineering Res. 21:49–53. 2017.

36 

Cesareo R, Napolitano C and Iozzino M: Strontium ranelate in postmenopausal osteoporosis treatment: A critical appraisal. Int J Womens Health. 2:1–6. 2010.PubMed/NCBI

37 

Kostenuik PJ and Shalhoub V: Osteoprotegerin: A physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 7:613–635. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Chen QY, Liang GQ, Lin Y, Liu BL and Zhao-Hui LI: Effects of strontium ranelate on titanium particles stimulating mononuclear macrophage to secrete osteolysis factor and its RANK expression. Rheum Arthritis. 2015.

39 

Li Y, Li J, Zhu S, Luo E, Feng G, Chen Q and Hu J: Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 418:725–730. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG and Stevens MM: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 31:3949–3956. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Nahass HE, Din NNE and Nasry SA: The effect of strontium ranelate gel on bone formation in calvarial critical size defects. Open Access Maced J Med Sci. 5:994–999. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Zhao S, Wang X, Li N, Chen Y, Su Y and Zhang J: Effects of strontium ranelate on bone formation in the mid-palatal suture after rapid maxillary expansion. Drug Des Devel Ther. 9:2725–2734. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Karatas OH, Toy E, Demir A, Toy H and Kozacioglu S: Effects of strontium ranelate on sutural bone formation: A histological and immunohistochemical study. Aust Orthod J. 32:139–147. 2016.PubMed/NCBI

44 

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, et al: The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 350:459–468. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Chen Y, Zhou Y, Yang S, Li JJ, Li X, Ma Y, Hou Y, Jiang N, Xu C, Zhang S, et al: Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility. Mater Sci Eng C Mater Biol Appl. 66:84–91. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Neves N, Linhares D, Costa G, Ribeiro CC and Barbosa MA: In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res. 6:366–375. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Yang D, Okamura H and Qiu L: Upregulated osterix expression elicited by Runx2 and Dlx5 is required for the accelerated osteoblast differentiation in PP2A Cα-knockdown cells. Cell Biol Int. 42:403–410. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Komori T: Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 149:313–323. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, et al: Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 89:773–779. 1997. View Article : Google Scholar : PubMed/NCBI

50 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Zhou H, Choong P, McCarthy R, Chou ST, Martin TJ and Ng KW: In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res. 9:1489–1499. 1994. View Article : Google Scholar : PubMed/NCBI

52 

van Leeuwen JP, van Driel M, van den Bemd GJ and Pols HA: Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr. 11:199–226. 2001.PubMed/NCBI

53 

Takahashi T, Kato S, Suzuki N, Kawabata N and Takagi M: Autoregulatory mechanism of Runx2 through the expression of transcription factors and bone matrix proteins in multipotential mesenchymal cell line, ROB-C26. J Oral Sci. 47:199–207. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Riminucci M, Corsi A, Peris K, Fisher LW, Chimenti S and Bianco P: Coexpression of bone sialoprotein (BSP) and the pivotal transcriptional regulator of osteogenesis, Cbfa1/Runx2, in malignant melanoma. Calcif Tissue Int. 73:281–289. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Rahman MS, Akhtar N, Jamil HM, Banik RS and Asaduzzaman SM: TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 3:150052015. View Article : Google Scholar : PubMed/NCBI

57 

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI

58 

Leah E: Osteoarthritis: TGF-β overload at bones of cartilage degeneration. Nat Rev Rheumatol. 9:3822013. View Article : Google Scholar : PubMed/NCBI

59 

Saito M, Ichikawa J, Ando T, Schoenecker JG, Ohba T, Koyama K, Suzuki-Inoue K and Haro H: Platelet-derived TGF-β induces tissue factor expression via the smad3 pathway in osteosarcoma cells. J Bone Miner Res. 33:2048–2058. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Li H, Fan J, Fan L, Li T, Yang Y, Xu H, Deng L, Li J, Li T, Weng X, et al: MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis. 9:1058–1073. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Chen X, Hu C, Wang G, Li L, Kong X, Ding Y and Jin Y: Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments. Cell Death Dis. 4:e5102013. View Article : Google Scholar : PubMed/NCBI

62 

Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ and Tejpar S: TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations. Exp Cell Res. 313:2887–2895. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Z., Yu, Z., Chang, H., Wang, Y., Xiang, H., Zhang, X., & Yu, B. (2019). Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway. Molecular Medicine Reports, 20, 3555-3564. https://doi.org/10.3892/mmr.2019.10592
MLA
Liu, Z., Yu, Z., Chang, H., Wang, Y., Xiang, H., Zhang, X., Yu, B."Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway". Molecular Medicine Reports 20.4 (2019): 3555-3564.
Chicago
Liu, Z., Yu, Z., Chang, H., Wang, Y., Xiang, H., Zhang, X., Yu, B."Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway". Molecular Medicine Reports 20, no. 4 (2019): 3555-3564. https://doi.org/10.3892/mmr.2019.10592