Open Access

Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases

  • Authors:
    • Taís Silveira Assmann
    • Fermín I. Milagro
    • José Alfredo Martínez
  • View Affiliations

  • Published online on: August 21, 2019     https://doi.org/10.3892/mmr.2019.10595
  • Pages: 3543-3554
  • Copyright: © Assmann et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs/miRs) are small non‑coding RNAs (ncRNAs) that regulate gene expression. Emerging knowledge has suggested that miRNAs have a role in the pathogenesis of metabolic disorders, supporting the hypothesis that miRNAs may represent potential biomarkers or targets for this set of diseases. However, the current evidence is often controversial. Therefore, the aim of the present study was to determine the associations between miRNAs‑target genes, miRNA‑long ncRNAs (lncRNAs), and miRNAs‑small molecules in human metabolic diseases, including obesity, type 2 diabetes and non‑alcoholic fatty liver disease. The metabolic disease‑related miRNAs were obtained from the Human MicroRNA Disease Database (HMDD) and miR2Disease database. A search on the databases Matrix Decomposition and Heterogeneous Graph Inference (MDHGI) and DisGeNET were also performed. miRNAs target genes were obtained from three independent sources: Microcosm, TargetScan and miRTarBase. The interactions between miRNAs‑lncRNA and miRNA‑small molecules were performed using the miRNet web tool. The network analyses were performed using Cytoscape software. As a result, a total of 20 miRNAs were revealed to be associated with metabolic disorders in the present study. Notably, 6 miRNAs (miR‑17‑5p, miR‑29c‑3p, miR‑34a‑5p, miR‑103a‑3p, miR‑107 and miR‑132‑3p) were found in the four resources (HMDD, miR2Disease, MDHGI, and DisGeNET) used for these analyses, presenting a stronger association with the diseases. Furthermore, the target genes of these miRNAs participate in several pathways previously associated with metabolic diseases. In addition, interactions between miRNA‑lncRNA and miRNA‑small molecules were also found, suggesting that some molecules can modulate gene expression via such an indirect way. Thus, the results of this data mining and integration analysis provide further information on the possible molecular basis of the metabolic disease pathogenesis as well as provide a path to search for potential biomarkers and therapeutic targets concerning metabolic diseases.

References

1 

Collaborators GRF: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the global burden of sisease study 2015. Lancet. 388:1659–1724. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Martínez JA, Milagro FI, Claycombe KJ and Schalinske KL: Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr. 5:71–81. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Nilsson EE, Sadler-Riggleman I and Skinner MK: Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 4:dvy0162018. View Article : Google Scholar : PubMed/NCBI

4 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Vienberg S, Geiger J, Madsen S and Dalgaard LT: MicroRNAs in metabolism. Acta Physiol (Oxf). 219:346–361. 2017. View Article : Google Scholar : PubMed/NCBI

7 

O'Brien KP, Ramphul E, Howard L, Gallagher WM, Malone C, Kerin MJ and Dwyer RM: Circulating MicroRNAs in cancer. Methods Mol Biol. 1509:123–139. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Rotllan N, Price N, Pati P, Goedeke L and Fernández-Hernando C: microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis. 246:352–360. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, et al: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Rottiers V and Näär AM: MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 13:239–250. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Xie H, Lim B and Lodish HF: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 58:1050–1057. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M and Stoffel M: miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA. 106:5813–5818. 2009. View Article : Google Scholar : PubMed/NCBI

14 

El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D and van Obberghen E: miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes. 57:2708–2717. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, et al: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 107:810–817. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Zhu H and Leung SW: Identification of microRNA biomarkers in type 2 diabetes: A meta-analysis of controlled profiling studies. Diabetologia. 58:900–911. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Paraskevopoulou MD and Hatzigeorgiou AG: Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 1402:271–286. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Yamamura S, Imai-Sumida M, Tanaka Y and Dahiya R: Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 75:467–484. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Moran VA, Perera RJ and Khalil AM: Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40:6391–6400. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA and Paz-Ares J: Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 39:1033–1037. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Wang K, Sun T, Li N, Wang Y, Wang JX, Zhou LY, Long B, Liu CY, Liu F and Li PF: MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet. 10:e10044672014. View Article : Google Scholar : PubMed/NCBI

22 

Legnini I, Morlando M, Mangiavacchi A, Fatica A and Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell. 53:506–514. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y, Enokida H, et al: Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One. 8:e703722013. View Article : Google Scholar : PubMed/NCBI

24 

Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F and Fan Q: CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38:5366–5383. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Sathishkumar C, Prabu P, Mohan V and Balasubramanyam M: Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics. 12:412018. View Article : Google Scholar : PubMed/NCBI

26 

Ji E, Kim C, Kim W and Lee EK: Role of long non-coding RNAs in metabolic control. Biochim Biophys Acta Gene Regul Mech. (pii): S1874-9399(18)30460-7. 2018.

27 

Deiters A: Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J. 12:51–60. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q and Deiters A: Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl. 47:7482–7484. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y and Cui Q: HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47:D1013–D1017. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G and Liu Y: miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37:D98–D104. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Chen X, Yin J, Qu J and Huang L: MDHGI: Matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput Biol. 14:e10064182018. View Article : Google Scholar : PubMed/NCBI

32 

Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F and Furlong LI: DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45:D833–D839. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Kutmon M, Kelder T, Mandaviya P, Evelo CT and Coort SL: CyTargetLinker: A cytoscape app to integrate regulatory interactions in network analysis. PLoS One. 8:e821602013. View Article : Google Scholar : PubMed/NCBI

34 

Dweep H, Sticht C, Pandey P and Gretz N: miRWalk-database: Prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Maere S, Heymans K and Kuiper M: BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 21:3448–3449. 2004. View Article : Google Scholar

37 

Bindea G, Galon J and Mlecnik B: CluePedia cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 29:661–663. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X and Jiang W: SM2miR: A database of the experimentally validated small molecules' effects on microRNA expression. Bioinformatics. 29:409–411. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Rukov JL, Wilentzik R, Jaffe I, Vinther J and Shomron N: Pharmaco-miR: Linking microRNAs and drug effects. Brief Bioinform. 15:648–659. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S and Xia J: miRNet-dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 44:W135–W141. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Zhang T, Tan P, Wang L, Jin N, Li Y, Zhang L, Yang H, Hu Z, Zhang L, Hu C, et al: RNALocate: A resource for RNA subcellular localizations. Nucleic Acids Res. 45:D135–D138. 2017.PubMed/NCBI

43 

Su ZD, Huang Y, Zhang ZY, Zhao YW, Wang D, Chen W, Chou KC and Lin H: iLoc-lncRNA: Predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics. 34:4196–4204. 2018.PubMed/NCBI

44 

Cao Z, Pan X, Yang Y, Huang Y and Shen HB: The lncLocator: A subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics. 34:2185–2194. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Heberle H, Meirelles GV, da Silva FR, Telles GP and Minghim R: InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 16:1692015. View Article : Google Scholar : PubMed/NCBI

46 

Kozomara A and Griffiths-Jones S: miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42:D68–D73. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P and Vandesompele J: LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 47:D135–D139. 2018. View Article : Google Scholar :

48 

Peng C, Ye Y, Wang Z, Guan L, Bao S, Li B and Li W: Meta-analysis of circulating microRNAs for the diagnosis of hepatocellular carcinoma. Dig Liver Dis. 51:621–631. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Shi C, Huang F, Gu X, Zhang M, Wen J, Wang X, You L, Cui X, Ji C and Guo X: Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 7:40830–40845. 2016.PubMed/NCBI

50 

Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK and Chakraborty S: Interplay between miRNAs and human diseases. J Cell Physiol. 233:2007–2018. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G and Li Y: Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci. 208:201–207. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, Stumvoll M and Blüher M: MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One. 4:e46992009. View Article : Google Scholar : PubMed/NCBI

53 

Xiao D, Zhou T, Fu Y, Wang R, Zhang H, Li M, Lin Y, Li Z, Xu C, Yang B, et al: MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression. Eur J Pharmacol. 838:170–176. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Heneghan HM, Miller N, McAnena OJ, O'Brien T and Kerin MJ: Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab. 96:E846–E850. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C and Zhao RC: miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 10:313–324. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G and Nelson PT: The miR-15/107 group of microRNA genes: Evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol. 402:491–509. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez-Botas J, Dávalos A, Fernández-Hernando C and Ordovás JM: Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system. Mol Nutr Food Res. 59:1865–1878. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Xue X, Cao AT, Cao X, Yao S, Carlsen ED, Soong L, Liu CG, Liu X, Liu Z, Duck LW, et al: Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression. Eur J Immunol. 44:673–682. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P and Regazzi R: Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes. 59:978–986. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM, Vangoitsenhoven R, Papadopoulou AS, Tian L, Schonefeldt S, Serneels L, Deroose C, et al: The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes. 65:53–61. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Kurtz CL, Fannin EE, Toth CL, Pearson DS, Vickers KC and Sethupathy P: Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep. 5:129112015. View Article : Google Scholar : PubMed/NCBI

63 

Massart J, Sjögren RJO, Lundell LS, Mudry JM, Franck N, O'Gorman DJ, Egan B, Zierath JR and Krook A: Altered miR-29 expression in Type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Diabetes. 66:1807–1818. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Chen F and Hu SJ: Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. J Biochem Mol Toxicol. 26:79–86. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y and Zhang CY: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res. 50:1756–1765. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Cui R, Li C, Wang J and Dai J: Induction of hepatic miR-34a by perfluorooctanoic acid regulates metabolism-related genes in mice. Environ Pollut. 244:270–278. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Wang J, Yan S, Zhang W, Zhang H and Dai J: Integrated proteomic and miRNA transcriptional analysis reveals the hepatotoxicity mechanism of PFNA exposure in mice. J Proteome Res. 14:330–341. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Shukla U, Tumma N, Gratsch T, Dombkowski A and Novak RF: Insights into insulin-mediated regulation of CYP2E1: miR-132/-212 targeting of CYP2E1 and role of phosphatidylinositol 3-kinase, Akt (protein kinase B), mammalian target of rapamycin signaling in regulating miR-132/-212 and miR-122/-181a expression in primary cultured rat hepatocytes. Drug Metab Dispos. 41:1769–1777. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Yahaya TO and Salisu TF: A review of Type 2 diabetes mellitus predisposing genes. Curr Diabetes Rev. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Go GW and Mani A: Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 85:19–28. 2012.PubMed/NCBI

71 

Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X and Zhai Q: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 6:307–319. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Kauppinen A, Suuronen T, Ojala J, Kaarniranta K and Salminen A: Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25:1939–1948. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Moates JM, Nanda S, Cissell MA, Tsai MJ and Stein R: BETA2 activates transcription from the upstream glucokinase gene promoter in islet beta-cells and gut endocrine cells. Diabetes. 52:403–408. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB and Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11:2323–2334. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Sun W, Zu Y, Fu X and Deng Y: Knockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy. Oncol Rep. 38:3347–3354. 2017.PubMed/NCBI

76 

van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E and Simonis M: Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 15:R62014. View Article : Google Scholar : PubMed/NCBI

77 

Goff LA and Rinn JL: Linking RNA biology to lncRNAs. Genome Res. 25:1456–1465. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Rizvi NF and Smith GF: RNA as a small molecule druggable target. Bioorg Med Chem Lett. 27:5083–5088. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Warner KD, Hajdin CE and Weeks KM: Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 17:547–558. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Assmann, T.S., Milagro, F.I., & Martínez, J.A. (2019). Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases. Molecular Medicine Reports, 20, 3543-3554. https://doi.org/10.3892/mmr.2019.10595
MLA
Assmann, T. S., Milagro, F. I., Martínez, J. A."Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases". Molecular Medicine Reports 20.4 (2019): 3543-3554.
Chicago
Assmann, T. S., Milagro, F. I., Martínez, J. A."Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases". Molecular Medicine Reports 20, no. 4 (2019): 3543-3554. https://doi.org/10.3892/mmr.2019.10595