Open Access

Antiproliferative and pro‑apoptotic effects of Cyclocarya paliurus polysaccharide and X‑ray irradiation combination on SW480 colorectal cancer cells

  • Authors:
    • Yongjun Jin
    • Zhezhu Jin
    • Sanya Jiang
  • View Affiliations

  • Published online on: September 2, 2019     https://doi.org/10.3892/mmr.2019.10642
  • Pages: 3535-3542
  • Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The anti‑hyperglycemic effects of Cyclocarya paliurus polysaccharide (CPP) have attracted increasing attention; however, limited research has been conducted on the potential effects of CPP on inhibiting tumor growth. The present study aimed to investigate the functions of CPP in combination with X‑ray irradiation on colorectal cancer cells and the underlying mechanisms. SW480 cells were treated with various concentrations of CPP for 24, 48 and 72 h to determine cell viability using a Cell Counting Kit‑8 assay. Then, the cells were divided into four groups as follows: Control, CPP (100 µmol/l), 8 Gy and CPP + 8 Gy. The proliferation and apoptosis, and colony formation of cells were detected using flow cytometry and plate clone formation assays, respectively. Reverse transcription‑quantitative PCR and western blot analyses were conducted to determine the expression of proliferation and apoptosis‑associated, and PI3K/Akt signaling‑associated genes. Treatment with 75 µmol/l CPP for 48 h significantly decreased cell viability compared with untreated cells. CPP in combination with 8 Gy X‑ray treatment significantly promoted the induction of apoptosis, and suppressed cell proliferation and clone formation compared with the control, CPP and 8 Gy groups. The detection of mRNA and protein expression levels by reverse transcription‑PCR and western blotting demonstrated that CPP in combination with 8 Gy not only significantly decreased the expression of proliferation marker protein Ki‑67, p53 and Bcl‑2, but also upregulated the expression of cleaved caspase‑3 and Bax, compared with the control. In addition, CPP and 8 Gy combined significantly attenuated the phosphorylation of PI3K and Akt. The present study demonstrated that the combination of CPP with X‑ray irradiation suppressed SW480 cell proliferation and promoted cell apoptosis compared with the control, CPP and 8 Gy groups. The underlying mechanisms may involve inhibition of PI3K/Akt signaling.

References

1 

Anderson WF, Umar A and Brawley OW: Colorectal carcinoma in black and white race. Cancer Metastasis Rev. 22:67–82. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Siegel R, Desantis C and Jemal A: Colorectal cancer statistics, 2014. CA Cancer J Clin. 64:104–117. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Junginger T, Goenner U, Hitzler M, Trinh TT, Lollert A, Heintz A, Wollschlaeger D and Blettner M: Influence of local recurrence and distant metastasis on prognosis after local excision of rectal carcinoma. Anticancer Res. 36:763–768. 2016.PubMed/NCBI

5 

Baxter NN, Morris AM, Rothenberger DA and Tepper JE: Impact of preoperative radiation for rectal cancer on subsequent lymph node evaluation: A population-based analysis. Int J Radiat Oncol Biol Phys. 61:426–431. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Newman NB, Sidhu MK, Baby R, Moss RA, Nissenblatt MJ, Chen T, Lu SE and Jabbour SK: Long-term bone marrow suppression during postoperative chemotherapy in rectal cancer patients after preoperative chemoradiation therapy. Int J Rad Oncol Biol Phys. 94:1052–1060. 2016. View Article : Google Scholar

7 

Wang L, Shan G, Liu X and Sun X: Changes of serum vascular endothelial growth factor of patients with rectal cancer before and after neoadjuvant chemotherapy and tumor progress. J Biol Regul Homeost Agents. 29:159–165. 2015.PubMed/NCBI

8 

Li Q, Hu J, Xie J, Nie S and Xie MY: Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja. Ann N Y Acad Sci. 1398:20–29. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Shu RG, Xu CR, Li LN and Yu ZL: Cyclocariosides II and III: Two secodammarane triterpenoid saponins from Cyclocarya paliurus. Planta Med. 61:551–553. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Kurihara H, Fukami H, Kusumoto A, Toyoda Y, Shibata H, Matsui Y, Asami S and Tanaka T: Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci Biotechnol Biochem. 67:877–880. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Xie MY, Li L, Nie SP, Wang XR and Fsc L: Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS. Eur Food Res Technol. 223:202–209. 2006. View Article : Google Scholar

12 

Xie JH, Xie MY, Nie SP, Shen MY, Wang YX and Li C: Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 119:1626–1632. 2010. View Article : Google Scholar

13 

Xie JH, Xie MY, Shen MY, Nie SP, Li C and Wang YX: Optimisation of microwave-assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja using response surface methodology. J Sci Food Agric. 90:1353–1360. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Xie JH, Dong CJ, Nie SP, Li F, Wang ZJ, Shen MY and Xie MY: Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 186:97–105. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Yang ZW, Ouyang KH, Zhao J, Chen H, Xiong L and Wang WJ: Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol. 91:1073–1080. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Yoshida T: Synthesis of polysaccharides having specific biological activities. Prog Polym Sci. 26:379–441. 2001. View Article : Google Scholar

17 

Xie JH, Liu X, Shen MY, Nie SP, Zhang H, Li C, Gong DM and Xie MY: Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chem. 136:1453–1460. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Xie MY and Xie JH: Review about the research on Cyclocarya paliurus (Batal.) Iljinskaja. J Food Sci Biotech. 27:113–121. 2008.

19 

Xu C and Xu F: Radio sensitizing effect of aloe polysaccharide on pancreatic cancer bxpc-3 cells. Pak J Pharm Sci. 29:1123–1126. 2016.PubMed/NCBI

20 

Cao L, Liu Y, Wang D, Huang L, Li F, Liu J, Zhang C, Shen Z, Gao Q, Yuan W and Zhang Y: MiR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. J Exp Clin Can Res. 37:832018. View Article : Google Scholar

21 

Sun D, Yang K, Zheng G, Li Z and Cao Y: Study on effect of peptide-conjugated near-infrared fluorescent quantum dots on the clone formation, proliferation, apoptosis, and tumorigenicity ability of human buccal squamous cell carcinoma cell line BcaCD885. Int J Nanomedicine. 5:401–405. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Johnson J and Barani IJ: Radiotherapy for malignant tumors of the skull base. Neurosurg Clin N Am. 24:125–135. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Glimelius B: Neo-adjuvant radiotherapy in rectal cancer. World J Gastroenterol. 19:8489–8501. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Park IJ and Yu CS: Current issues in locally advanced colorectal cancer treated by preoperative chemoradiotherapy. World J Gastroenterol. 20:2023–2029. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Mirnezami R, Chang GJ, Das P, Chandrakumaran K, Tekkis P, Darzi A and Mirnezami AH: Intraoperative radiotherapy in colorectal cancer: Systematic review and meta-analysis of techniques, long-term outcomes, and complications. Surg Oncol. 22:22–35. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Daly ME, Kapp DS, Maxim PG, Welton ML, Tran PT, Koong AC and Chang DT: Orthovoltage intraoperative radiotherapy for locally advanced and recurrent colorectal cancer. Dis Colon Rectum. 55:695–702. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Turley RS, Czito BG, Haney JC, Tyler DS, Mantyh CR and Migaly J: Intraoperative pelvic brachytherapy for treatment of locally advanced or recurrent colorectal cancer. Tech Coloproctol. 17:95–100. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Chakravarti A, Compton CC, Shellito PC, Wood WC, Landry J, Machuta SR, Kaufman D, Ancukiewicz M and Willett CG: Long-term follow-up of patients with rectal cancer managed by local excision with and without adjuvant irradiation. Ann Surg. 230:49–54. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Han SL, Zeng QQ, Shen X, Zheng XF, Guo SC and Yan JY: The indication and surgical results of local excision following radiotherapy for low rectal cancer. Colorectal Dis. 12:1094–1098. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Rasulov AO, Gordeyev SS, Barsukov YA, Tkachev SI, Malikhov AG, Balyasnikova SS and Fedyanin MY: Short-course preoperative radiotherapy combined with chemotherapy, delayed surgery and local hyperthermia for rectal cancer: A phase II study. Int J Hyperthermia. 33:465–470. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Fusco V, Parisi S, d'Andrea B, Troiano M, Clemente MA, Morelli F, Caivano R and Guglielmi G: Role of radiotherapy in the treatment of renal cell cancer: Updated and critical review. Tumori. 103:504–510. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Petrillo A, Fusco R, Petrillo M, Granata V, Delrio P, Bianco F, Pecori B, Botti G, Tatangelo F, Caracò C, et al: Standardized index of shape (DCE-MRI) and standardized uptake value (PET/CT): Two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile. Oncotarget. 8:8143–8153. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Theis VS, Sripadam R, Ramani V and Lal S: Chronic radiation enteritis. Clinical Oncol (R Coll Radiol). 22:70–83. 2010. View Article : Google Scholar

35 

Aloia TA, Barakat O, Connelly J, Haykal N, Michel D, Gaber AO and Ghobrial RM: Gastric radiation enteritis after intra-arterial yttrium-90 microsphere therapy for early stage hepatocellular carcinoma. Exp Clin Transplant. 7:141–144. 2009.PubMed/NCBI

36 

Rodriguez ML, Martin MM, Padellano LC, Palomo AM and Puebla YI: Gastrointestinal toxicity associated to radiation therapy. Clin Transl Oncol. 12:554–561. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Wu Z, Gao T, Zhong R, Lin Z, Jiang C, Ouyang S, Zhao M, Che C, Zhang J and Yin Z: Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats. Pharm Biol. 55:712–721. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Jiang C, Wang Q, Wei Y, Yao N, Wu Z, Ma Y, Lin Z, Zhao M, Che C, Yao X, et al: Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. J Ethnopharmacol. 176:17–26. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Lu X, Su M, Li Y, Zeng L, Liu X, Li J, Zheng B and Wang S: Effect of acanthopanax giraldii harms var. Hispidus hoo polysaccharides on the human gastric cancer cell line SGC-7901 and its possible mechanism. Chin Med J (Engl). 115:716–721. 2002.PubMed/NCBI

40 

Xiang J, Xiang Y, Lin S, Xin D, Liu X, Weng L, Chen T and Zhang M: Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma in vitro and in vivo. Tumour Biol. 35:3517–3524. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Fang Y, Ning A, Li S, Zhou S, Liu L, Joseph TP, Zhong M, Jiao J, Zhang W, Shi Y, et al: Polysaccharides extracted from rhizoma pleionis have antitumor properties in vitro and in an H22 mouse hepatoma ascites model in vivo. Int J Mol Sci. 19(pii): E13862018. View Article : Google Scholar : PubMed/NCBI

42 

Hou Y, Ding X, Hou W, Song B, Wang T, Wang F, Li J, Zeng Y, Zhong J, Xu T and Zhu H: Pharmacological evaluation for anticancer and immune activities of a novel polysaccharide isolated from Boletus speciosus Frost. Mol Med Rep. 9:1337–1344. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Wang C, Shi S, Chen Q, Lin S, Wang R, Wang S and Chen C: Antitumor and immunomodulatory activities of ganoderma lucidum polysaccharides in glioma-bearing rats. Integr Cancer Ther. 17:674–683. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Zhong F, Bi R, Yu B, Yang F, Yang W and Shui R: A comparison of visual assessment and automated digital image analysis of Ki67 labeling index in breast cancer. PLoS One. 11:e01505052016. View Article : Google Scholar : PubMed/NCBI

45 

Endl E and Gerdes J: The Ki-67 protein: Fascinating forms and an unknown function. Exp Cell Res. 257:231–237. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311. 1991.PubMed/NCBI

47 

Vorburger SA, Pataer A, Yoshida K, Barber GN, Xia W, Chiao P, Ellis LM, Hung MC, Swisher SG and Hunt KK: Role for the double-stranded RNA activated protein kinase PKR in E2F-1-induced apoptosis. Oncogene. 21:6278–6288. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Hientz K, Mohr A, Bhakta-Guha D and Efferth T: The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 8:8921–8946. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Duffy MJ, Synnott NC and Crown J: Mutant p53 as a target for cancer treatment. Eur J Cancer. 83:258–265. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Shehzad A, Lee J, Huh TL and Lee YS: Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol Cells. 35:526–532. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ and Thor AD: Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 61:348–354. 2001.PubMed/NCBI

52 

Langford MP, McGee DJ, Ta KH, Redens TB and Texada DE: Multiple caspases mediate acute renal cell apoptosis induced by bacterial cell wall components. Ren Fail. 33:192–206. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Polak R and Buitenhuis M: The PI3K/PKB signaling module as key regulator of hematopoiesis: Implications for therapeutic strategies in leukemia. Blood. 119:911–923. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Almhanna K, Strosberg J and Malafa M: Targeting AKT protein kinase in gastric cancer. Anticancer Res. 31:4387–4392. 2011.PubMed/NCBI

56 

Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Franke TF: PI3K/Akt: Getting it right matters. Oncogene. 27:6473–6488. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Sheng S, Qiao M and Pardee AB: Metastasis and AKT activation. J Cell Physiol. 218:451–454. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jin, Y., Jin, Z., & Jiang, S. (2019). Antiproliferative and pro‑apoptotic effects of Cyclocarya paliurus polysaccharide and X‑ray irradiation combination on SW480 colorectal cancer cells. Molecular Medicine Reports, 20, 3535-3542. https://doi.org/10.3892/mmr.2019.10642
MLA
Jin, Y., Jin, Z., Jiang, S."Antiproliferative and pro‑apoptotic effects of Cyclocarya paliurus polysaccharide and X‑ray irradiation combination on SW480 colorectal cancer cells". Molecular Medicine Reports 20.4 (2019): 3535-3542.
Chicago
Jin, Y., Jin, Z., Jiang, S."Antiproliferative and pro‑apoptotic effects of Cyclocarya paliurus polysaccharide and X‑ray irradiation combination on SW480 colorectal cancer cells". Molecular Medicine Reports 20, no. 4 (2019): 3535-3542. https://doi.org/10.3892/mmr.2019.10642