Open Access

Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge

  • Authors:
    • Tianpeng He
    • Xin Li
    • Dongmei Xie
    • Lili Tian
  • View Affiliations

  • Published online on: August 26, 2019     https://doi.org/10.3892/mmr.2019.10615
  • Pages: 3509-3518
  • Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Circular RNAs (circRNAs) comprise a novel class of widespread non‑coding RNAs that may regulate gene expression in eukaryotes. However, the characterization and function of circRNAs remain elusive in human cancer, including oral squamous cell carcinoma (OSCC). In this study, the expression level of circPVT1 in OSCC was detected and define its functional role in initiation and progression of OSCC. It was identified that circPVT1 was upregulated in OSCC cells and specimens. Knockdown of circPVT1 suppressed cell proliferation as evidenced by Cell Counting kit‑8 assay and elevated Ki‑67 expression. Mechanistically, it was demonstrated that circPVT1 possessed two targeting sites of microRNA (miRNA/miR)‑125b and could effectively sponge miR‑125b to release its downstream mRNA targets. Subsequently, the downstream target signal transducer and activator of transcription 3 (STAT3) was verified as a direct target of miR‑125b and STAT3 expression was regulated by the circPVT1/miR‑125b axis. CircPVT1 functioned as competing endogenous RNA (ceRNA) to increase the STAT3 level and cell proliferation through sponging miR‑125b. In conclusion, circPVT1 regulates cell proliferation and may serve as a promising therapeutic target for OSCC patients. Therefore, silencing of circPVT1 could be a future direction to develop a novel treatment strategy.

References

1 

Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 7:1088–1099. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Yan L, Chen F, Liu F, Qiu Y, Wang J, Wu J, Bao X, Hu Z, Peng X, Lin X, et al: Differences in modifiable factors of oral squamous cell carcinoma in the upper and lower of oral fissure. Oncotarget. 8:75094–75101. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Glazer CA, Chang SS, Ha PK and Califano JA: Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol. 45:440–446. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Hsiao KY, Sun HS and Tsai SJ: Circular RNA-New member of noncoding RNA with novel functions. Exp Biol Med (Maywood). 242:1136–1141. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Holdt LM, Kohlmaier A and Teupser D: Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 75:1071–1098. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z and Li L: Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 9:1175–1188. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Kristensen LS, Hansen TB, Veno MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Meyer KB, Maia AT, O'Reilly M, Ghoussaini M, Prathalingam R, Porter-Gill P, Ambs S, Prokunina-Olsson L, Carroll J and Ponder BA: A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet. 7:e10021652011. View Article : Google Scholar : PubMed/NCBI

11 

Lu D, Luo P, Wang Q, Ye Y and Wang B: lncRNA PVT1 in cancer: A review and meta-analysis. Clin Chim Acta. 474:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and Blandino G: The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 18:2372017. View Article : Google Scholar : PubMed/NCBI

14 

Zhao M, Sano D, Pickering CR, Jasser SA, Henderson YC, Clayman GL, Sturgis EM, Ow TJ, Lotan R, Carey TE, et al: Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites. Clin Cancer Res. 17:7248–7264. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Dai CY, Tsai YS, Chou WW, Liu T, Huang CF, Wang SC, Tsai PC, Yeh ML, Hsieh MY, Huang CI, et al: The IL-6/STAT3 pathway upregulates microRNA-125b expression in hepatitis C virus infection. Oncotarget. 9:11291–11302. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Gorczynski RM, Alexander C, Brandenburg K, Chen Z, Heini A, Neumann D, Mach JP, Rietschel ET, Terskikh A, Ulmer AJ, et al: Corrigendum to ‘An altered REDOX environment, assisted by over-expression of fetal hemoglobins, protects from inflammatory colitis and reduces inflammatory cytokine expression’ [Int. Immunopharmacol. 50 (2017) 69–76]. Int Immunopharmacol. 59:4142018. View Article : Google Scholar : PubMed/NCBI

18 

MacPherson S, Horkoff M, Gravel C, Hoffmann T, Zuber J and Lum JJ: STAT3 regulation of citrate synthase is essential during the initiation of lymphocyte cell growth. Cell Rep. 19:910–918. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Momen-Heravi F and Bala S: Emerging role of non-coding RNA in oral cancer. Cell Signal. 42:134–143. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Li P, Zhang X, Wang H, Wang L, Liu T, Du L, Yang Y and Wang C: MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 16:739–751. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Yang J, Meng X, Pan J, Jiang N, Zhou C, Wu Z and Gong Z: CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biology. 15:35–43. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B and Guo J: Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 444:132–136. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A and Alajez NM: Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 8:e30452017. View Article : Google Scholar : PubMed/NCBI

24 

Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Chandra Gupta S and Nandan Tripathi Y: Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Kanwal R, Plaga AR, Liu X, Shukla GC and Gupta S: MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett. 407:9–20. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Ungerleider N, Jain V, Wang Y, Maness NJ, Blair RV, Alvarez X, Midkiff C, Kolson D, Bai S, Roberts C, et al: Comparative analysis of gammaherpesvirus circRNA repertoires: Conserved and unique viral circular RNAs. J Virol. 93(pii): e01952–18. 2019.PubMed/NCBI

28 

Du WW, Zhang C, Yang W, Yong T, Awan FM and Yang BB: Identifying and characterizing circRNA-protein interaction. Theranostics. 7:4183–4191. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R and Finn SP: Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci. 4:382017. View Article : Google Scholar : PubMed/NCBI

30 

Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W and Cao H: An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 8:73271–73281. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Hu J, Han Q, Gu Y, Ma J, McGrath M, Qiao F, Chen B, Song C and Ge Z: Circular RNA PVT1 expression and its roles in acute lymphoblastic leukemia. Epigenomics. 10:723–732. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Hansen TB, Kjems J and Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Mali SB: Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol. 51:565–569. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Liu Y, Sepich DS and Solnica-Krezel L: Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation. PLoS Genet. 13:e10065642017. View Article : Google Scholar : PubMed/NCBI

36 

Li J, Cui J, Zhang J, Liu Y, Han L, Jia C, Deng J and Liang H: PIAS3, an inhibitor of STAT3, has intensively negative association with the survival of gastric cancer. Int J Clin Exp Med. 8:682–689. 2015.PubMed/NCBI

37 

Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T, Kawashima T, Nanakin A, Sawabu T, Uenoyama Y, et al: STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene. 23:4921–4929. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
He, T., Li, X., Xie, D., & Tian, L. (2019). Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge. Molecular Medicine Reports, 20, 3509-3518. https://doi.org/10.3892/mmr.2019.10615
MLA
He, T., Li, X., Xie, D., Tian, L."Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge". Molecular Medicine Reports 20.4 (2019): 3509-3518.
Chicago
He, T., Li, X., Xie, D., Tian, L."Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge". Molecular Medicine Reports 20, no. 4 (2019): 3509-3518. https://doi.org/10.3892/mmr.2019.10615