Open Access

Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling

  • Authors:
    • Jiani He
    • Lin Fu
    • Qingchang Li
  • View Affiliations

  • Published online on: August 23, 2019     https://doi.org/10.3892/mmr.2019.10610
  • Pages: 3487-3498
  • Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Remodeling and spacing factor 1 (Rsf‑1) has been reported as overexpressed in numerous cancers; however, its expression, biological functions and mechanisms in malignant melanoma remain unknown. In the present study, the expression of Rsf‑1 was investigated in 50 cases of malignant melanoma samples using immunohistochemistry. The results revealed that Rsf‑1 expression was elevated in 38% of specimens. MTT, colony formation, Transwell and flow cytometry assays were performed to investigate the functions of Rsf‑1. Knockdown of Rsf‑1 in the MV3 and A375 melanoma cell lines decreased the viability, invasion and cell cycle transition of cells. Conversely, overexpression of Rsf‑1 in M14 cells with low endogenous Rsf‑1 expression induced opposing effects. Further analysis revealed that Rsf‑1 knockdown decreased matrix metalloproteinase‑2, cyclin E and phosphorylated‑IκB expression. Additionally, Rsf‑1 depletion reduced cisplatin resistance and significantly increased the cisplatin‑associated apoptotic rate, whereas Rsf‑1 overexpression exhibited opposing effects. Rsf‑1 also maintained the mitochondrial membrane potential following cisplatin treatment. Analysis of apoptosis‑associated proteins revealed that Rsf‑1 positively regulated B‑cell lymphoma 2 (Bcl‑2), cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2, and downregulated Bcl‑2‑associated X protein expression. Nuclear factor κ‑light‑chain‑enhancer of activated B‑cells (NF‑κB) inhibition reversed the effects of Rsf‑1 on Bcl‑2. In conclusion, Rsf‑1 was overexpressed in malignant melanoma and may contribute to the malignant behaviors of melanoma cells, possibly via the regulation of NF‑κB signaling. Therefore, Rsf‑1 may be a potential therapeutic target in the treatment of malignant melanoma.

References

1 

Merrill SJ, Subramanian M and Godar DE: Worldwide cutaneous malignant melanoma incidences analyzed by sex, age, and skin type over time (1955–2007): Is HPV infection of androgenic hair follicular melanocytes a risk factor for developing melanoma exclusively in people of European-ancestry? Dermatoendocrinol. 8:e12153912016. View Article : Google Scholar : PubMed/NCBI

2 

Li H, Pedersen L, Nørgaard M, Ulrichsen SP, Thygesen SK and Nelson JJ: The occurrence of non-melanoma malignant skin lesions and non-cutaneous squamous-cell carcinoma among metastatic melanoma patients: An observational cohort study in Denmark. BMC Cancer. 16:2952016. View Article : Google Scholar : PubMed/NCBI

3 

Nahar VK, Allison Ford M, Brodell RT, Boyas JF, Jacks SK, Biviji-Sharma R, Haskins MA and Bass MA: Skin cancer prevention practices among malignant melanoma survivors: A systematic review. J Cancer Res Clin Oncol. 142:1273–1283. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Peterson M, Albertini MR and Remington P: Remington, incidence, survival, and mortality of malignant cutaneous melanoma in wisconsin, 1995–2011. WMJ. 114:196–201. 2015.PubMed/NCBI

5 

Johnson-Obaseki SE, Labajian V, Corsten MJ and McDonald JT: Incidence of cutaneous malignant melanoma by socioeconomic status in Canada: 1992–2006. J Otolaryngol Head Neck Surg. 44:532015. View Article : Google Scholar : PubMed/NCBI

6 

Dzambova M, Sečníková Z, Jiráková A, Jůzlová K, Viklický O, Hošková L, Göpfertovà D and Hercogová J: Malignant melanoma in organ transplant recipients: Incidence, outcomes, and management strategies: A review of literature. Dermatol Ther. 29:64–68. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Brewer JD, Shanafelt TD, Call TG, Cerhan JR, Roenigk RK, Weaver AL and Otley CC: Increased incidence of malignant melanoma and other rare cutaneous cancers in the setting of chronic lymphocytic leukemia. Int J Dermatol. 54:e287–e293. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Chang HY, Feng HL, Wang L, Chou P and Wang PF: The Incidence, prevalence, and survival of malignant melanoma in Taiwan. Value Health. 17:A7402014. View Article : Google Scholar : PubMed/NCBI

9 

Nowak-Sadzikowska J, Walasek T, Jakubowicz J, Blecharz P and Reinfuss M: Current treatment options of brain metastases and outcomes in patients with malignant melanoma. Rep Pract Oncol Radiother. 21:271–277. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Schmid-Wendtner M and Wendtner CM: Treatment of metastatic malignant melanoma. Dtsch Med Wochenschr. 141:10002016.(In German). PubMed/NCBI

11 

Kozovska Z, Gabrisova V and Kucerova L: Malignant melanoma: Diagnosis, treatment and cancer stem cells. Neoplasma. 63:510–517. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Harries M, Malvehy J, Lebbe C, Heron L, Amelio J, Szabo Z and Schadendorf D: Treatment patterns of advanced malignant melanoma (stage III–IV)-A review of current standards in Europe. Eur J Cancer. 60:179–189. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Sheu JJ, Choi JH, Guan B, Tsai FJ, Hua CH, Lai MT, Wang TL and Shih IeM: Rsf-1, a chromatin remodelling protein, interacts with cyclin E1 and promotes tumour development. J Pathol. 229:559–568. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Hanai K, Furuhashi H, Yamamoto T, Akasaka K and Hirose S: RSF governs silent chromatin formation via histone H2Av replacement. PLoS Genet. 4:e10000112008. View Article : Google Scholar : PubMed/NCBI

15 

Liang PI, Wu LC, Sheu JJ, Wu TF, Shen KH, Wang YH, Wu WR, Shiue YL, Huang HY, Hsu HP, et al: Rsf-1/HBXAP overexpression is independent of gene amplification and is associated with poor outcome in patients with urinary bladder urothelial carcinoma. J Clin Pathol. 65:802–807. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Min S, Jo S, Lee HS, Chae S, Lee JS, Ji JH and Cho H: ATM-dependent chromatin remodeler Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. Cell Cycle. 13:666–677. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Goldfarb DM, Gukova LA, Chernin LS, Avdienko ID, Mnatsakanian GG, Kushner IC, Kuznetsova VN and Strachova TS: Rsf mutants of Escherichia coli HfrC defective in the production of the factor stimulating recombination in conjugation. Mol Gen Genet. 129:295–310. 1974. View Article : Google Scholar : PubMed/NCBI

18 

Iwasa H, Kuroyanagi H, Maimaiti S, Ikeda M, Nakagawa K and Hata Y: Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Exp Cell Res. 319:1–11. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Fang FM, Li CF, Huang HY, Lai MT, Chen CM, Chiu IW, Wang TL, Tsai FJ, Shih IeM and Sheu JJ: Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am J Pathol. 178:2407–2415. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Li H, Zhang Y, Zhang Y, Bai X, Peng Y and He P: Rsf-1 overexpression in human prostate cancer, implication as a prognostic marker. Tumour Biol. 35:5771–5776. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Li Q, Dong Q and Wang E: Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity. Biochem Biophys Res Commun. 420:6–10. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Lin CY, Tian YF, Wu LC, Chen LT, Lin LC, Hsing CH, Lee SW, Sheu MJ, Lee HH, Wang YH, et al: Rsf-1 expression in rectal cancer: With special emphasis on the independent prognostic value after neoadjuvant chemoradiation. J Clin Pathol. 65:687–692. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Liu S, Dong Q and Wang E: Rsf-1 overexpression correlates with poor prognosis and cell proliferation in colon cancer. Tumour Biol. 33:1485–1491. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Maeda D, Chen X, Guan B, Nakagawa S, Yano T, Taketani Y, Fukayama M, Wang TL and Shih IeM: Rsf-1 (HBXAP) expression is associated with advanced stage and lymph node metastasis in ovarian clear cell carcinoma. Int J Gynecol Pathol. 30:30–35. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Xie C, Fu L, Xie L, Liu N and Li Q: Rsf-1 overexpression serves as a prognostic marker in human hepatocellular carcinoma. Tumour Biol. 35:7595–7601. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Tai HC, Huang HY, Lee SW, Lin CY, Sheu MJ, Chang SL, Wu LC, Shiue YL, Wu WR, Lin CM and Li CF: Associations of Rsf-1 overexpression with poor therapeutic response and worse survival in patients with nasopharyngeal carcinoma. J Clin Pathol. 65:248–253. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Sheu JJ, Choi JH, Yildiz I, Tsai FJ, Shaul Y, Wang TL and Shih IeM: The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 68:4050–4057. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Choi JH, Sheu JJ, Guan B, Jinawath N, Markowski P, Wang TL and Shih IeM: Functional analysis of 11q13.5 amplicon identifies Rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer. Cancer Res. 69:1407–1415. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Trinidad CM, Torres-Cabala CA, Curry JL, Prieto VG and Aung PP: Update on eighth edition American Joint Committee on Cancer classification for cutaneous melanoma and overview of potential pitfalls in histological examination of staging parameters. J Clin Pathol. 72:265–270. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Fu L, Xue D, Zhang X, Hao F, Xie L, He J, Gai J, Liu Y, Xu H, et al: Overexpression of Rsf-1 correlates with poor survival and promotes invasion in non-small cell lung cancer. Virchows Arch. 470:553–560. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Jang JH and Surh YJ: Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activation. J Biol Chem. 279:38779–38786. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Sheu JJ, Guan B, Choi JH, Lin A, Lee CH, Hsiao YT, Wang TL, Tsai FJ and Shih IeM: Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J Biol Chem. 285:38260–38269. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Mao TL, Hsu CY, Yen MJ, Gilks B, Sheu JJ, Gabrielson E, Vang R, Cope L, Kurman RJ, Wang TL and Shih IeM: Expression of Rsf-1, a chromatin-remodeling gene, in ovarian and breast carcinoma. Hum Pathol. 37:1169–1175. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Davidson B, Trope' CG, Wang TL and Shih IeM: Expression of the chromatin remodeling factor Rsf-1 is upregulated in ovarian carcinoma effusions and predicts poor survival. Gynecol Oncol. 103:814–819. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Zhao XC, An P, Wu XY, Zhang LM, Long B, Tian Y, Chi XY and Tong DY: Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1. Tumour Biol. 37:7203–7212. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Ren J, Chen QC, Jin F, Wu HZ, He M, Zhao L, Yu ZJ, Yao WF, Mi XY, Wang EH and Wei MJ: Overexpression of Rsf-1 correlates with pathological type, p53 status and survival in primary breast cancer. Int J Clin Exp Pathol. 7:5595–5608. 2014.PubMed/NCBI

38 

Chae S, Ji JH, Kwon SH, Lee HS, Lim JM, Kang D, Lee CW and Cho H: HBxAPalpha/Rsf-1-mediated HBx-hBubR1 interactions regulate the mitotic spindle checkpoint and chromosome instability. Carcinogenesis. 34:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Hu BS, Yu HF, Zhao G and Zha TZ: High RSF-1 expression correlates with poor prognosis in patients with gastric adenocarcinoma. Int J Clin Exp Pathol. 5:668–673. 2012.PubMed/NCBI

40 

Rotte A, Martinka M and Li G: MMP2 expression is a prognostic marker for primary melanoma patients. Cell Oncol (Dordr). 35:207–216. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Santala S, Talvensaari-Mattila A, Soini Y and Santala M: Cyclin E expression correlates with Cancer-specific survival in endometrial endometrioid adenocarcinoma. Anticancer Res. 35:3393–3397. 2015.PubMed/NCBI

42 

Alsina M, Landolfi S, Aura C, Caci K, Jimenez J, Prudkin L, Castro S, Moreno D, Navalpotro B, Tabernero J and Scaltriti M: Cyclin E amplification/overexpression is associated with poor prognosis in gastric cancer. Ann Oncol. 26:438–439. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Deng W, Zhou Y, Tiwari AF, Su H, Yang J, Zhu D, Lau VM, Hau PM, Yip YL, Cheung AL, et al: p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells. Int J Cancer. 136:1361–1370. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Li HC, Chen YF, Feng W, Cai H, Mei Y, Jiang YM, Chen T, Xu K and Feng DX: Loss of the Opa interacting protein 5 inhibits breast cancer proliferation through miR-139-5p/NOTCH1 pathway. Gene. 603:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Chen X, Wong JY, Wong P and Radany EH: Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol Cancer Res. 9:448–461. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Matsuyama S, Palmer J, Bates A, Poventud-Fuentes I, Wong K, Ngo J and Matsuyama M: Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med (Maywood). 241:1265–1271. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Gill C, Dowling C, O'Neill AJ and Watson RW: Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer. 8:392009. View Article : Google Scholar : PubMed/NCBI

48 

Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S and Simon HU: cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol. 36:1975–1984. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Gyrd-Hansen M and Meier P: IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 10:561–574. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, Al-Kuraya KS and Uddin S: Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One. 7:e399452012. View Article : Google Scholar : PubMed/NCBI

51 

Benimetskaya L, Ayyanar K, Kornblum N, Castanotto D, Rossi J, Wu S, Lai J, Brown BD, Popova N, Miller P, et al: Bcl-2 protein in 518A2 melanoma cells in vivo and in vitro. Clin Cancer Res. 12:4940–4948. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Leiter U, Schmid RM, Kaskel P, Peter RU and Krähn G: Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res. 292:225–232. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
He, J., Fu, L., & Li, Q. (2019). Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling. Molecular Medicine Reports, 20, 3487-3498. https://doi.org/10.3892/mmr.2019.10610
MLA
He, J., Fu, L., Li, Q."Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling". Molecular Medicine Reports 20.4 (2019): 3487-3498.
Chicago
He, J., Fu, L., Li, Q."Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling". Molecular Medicine Reports 20, no. 4 (2019): 3487-3498. https://doi.org/10.3892/mmr.2019.10610