Open Access

Upregulation of MAPK10, TUBB2B and RASL11B may contribute to the development of neuroblastoma

  • Authors:
    • Jiangtao Liu
    • Yulin Li
  • View Affiliations

  • Published online on: August 20, 2019     https://doi.org/10.3892/mmr.2019.10589
  • Pages: 3475-3486
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate genes and transcription factors (TFs) that may contribute to neuroblastoma (NB) development. The GSE78061 dataset that included 25 human NB cell lines and four retinal pigment epithelial cell lines was used to analyze differentially expressed genes (DEGs) between groups. Functional enrichment analysis and protein‑protein interaction (PPI) network analysis were performed for the identified DEGs. Additionally, submodule analysis and TF‑target regulatory networks were conducted. The relative mRNA expression levels of mitogen‑activated protein kinase 10 (MAPK10), tubulin β 2B class IIb (TUBB2B), RAS like family 11 member B (RASL11B) and integrin subunit α 2 (ITGA2) in the NB cell line SH‑SY5Y were compared with retinal pigment epithelial cell lines. A set of 386 upregulated and 542 downregulated DEGs were obtained. Upregulated DEGs were significantly associated with the ‘neuron migration’ and ‘dopaminergic synapse signaling’ pathways, whereas, downregulated DEGs were primarily involved in ‘focal adhesion’ such as ITGA2 and ITGA3. In the PPI networks analyzed, MAPK10, dopa decarboxylase (DDC), G protein subunit γ 2 (GNG2), paired like homeobox 2B (PHOX2B), TUBB2B, RASL11B, and ITGA2 were hub genes with high connectivity degrees. Additionally, PHOX2B was predicted to be a TF regulating TUBB2B in the regulatory network. The expressions of MAPK10, TUBB2B, RASL11B and ITGA2 were detected by reverse transcription‑quantitative polymerase chain reaction in the NB cell line SH‑SY5Y, and were consistent with the present bioinformatics results, suggesting that MAPK10, DDC, GNG2, PHOX2B, TUBB2B, RASL11B, ITGA2 and ITGA3 may contribute to NB development. Additionally, the present study identified a novel significant association between the increased expression levels of MAPK10, TUBB2B and RASL11B, and NB cells.

References

1 

Shohet J and Foster J: Neuroblastoma. BMJ. 357:j18632017. View Article : Google Scholar : PubMed/NCBI

2 

Abo-Elenain A, Naiem Y, Hamedhosam-Eldin Hotmail Com H, Emam M, Elkashef W and AbdelRafee A: Right adrenal gland neuroblastoma infiltrating the liver and mimicking mesenchymal hamartoma: A case report. Int J Surg Case Rep. 12:95–98. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Park JR, Eggert A and Caron H: Neuroblastoma: Biology, prognosis, and treatment. Pediatr Clin North Am. 5597–120. (x)2008. View Article : Google Scholar : PubMed/NCBI

4 

Castleberry RP, Shuster JJ and Smith EI: The Pediatric Oncology Group experience with the international staging system criteria for neuroblastoma. Member Institutions of the Pediatric Oncology Group. J Clin Oncol. 12:2378–2381. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Tonini GP: Growth, progression and chromosome instability of Neuroblastoma: A new scenario of tumorigenesis? BMC Cancer. 17:202017. View Article : Google Scholar : PubMed/NCBI

6 

Galli S, Naranjo A, Van Ryn C, Tilan JU, Trinh E, Yang C, Tsuei J, Hong SH, Wang H, Izycka-Swieszewska E, et al: Neuropeptide Y as a biomarker and therapeutic target for neuroblastoma. Am J Pathol. 186:3040–3053. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Lee SG, Jeon HY, Su ZZ, Richards JE, Vozhilla N, Sarkar D, Van Maerken T and Fisher PB: Astrocyte elevated gene-1 contributes to the pathogenesis of neuroblastoma. Oncogene. 28:2476–2484. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Brunen D, de Vries RC, Lieftink C, Beijersbergen RL and Bernards R: PIM kinases are a potential prognostic biomarker and therapeutic target in neuroblastoma. Mol Cancer Ther. 17:849–857. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Galinski B, Luxemburg M, Ewart M, Landesman Y and Weiser D: Abstract 1938: Exportin-1 (XPO1) is a novel therapeutic biomarker for patients with neuroblastoma. Cancer Res. 77:1938. 2017.

10 

Cui X, Yang Y, Jia D, Jing Y, Zhang S, Zheng S, Cui L, Dong R and Dong K: Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma. Biochem Biophys Res Commun. 483:609–616. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Ishizuka Y, Koshinaga T, Hirano T, Nagasaki-Maeoka E, Watanabe Y, Hoshi R, Yoshizawa S, Sugito K, Kawashima H, Uekusa S, et al: NRP1 knockdown promotes the migration and invasion of human neuroblastoma-derived SKNAS cells via the activation of β1 integrin expression. Int J Oncol. 53:159–166. 2018.PubMed/NCBI

12 

Mei Z, Yan P, Wang Y, Liu S and He F: Knockdown of zinc transporter ZIP8 expression inhibits neuroblastoma progression and metastasis in vitro. Mol Med Rep. 18:477–485. 2018.PubMed/NCBI

13 

Irshad S, Pedley RB, Anderson J, Latchman DS and Budhram-Mahadeo V: The Brn-3b transcription factor regulates the growth, behavior and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem. 290:21617–21627. 2015. View Article : Google Scholar

14 

Souzaki R, Tajiri T, Souzaki M, Kinoshita Y, Tanaka S, Kohashi K, Oda Y, Katano M and Taguchi T: Hedgehog signaling pathway in neuroblastoma differentiation. J Pediatr Surg. 45:2299–2304. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Hart LS, Rader J, Raman P, Batra V, Russell MR, Tsang M, Gagliardi M, Chen L, Martinez D, Li Y, et al: Preclinical therapeutic synergy of MEK1/2 and CDK4/6 inhibition in neuroblastoma. Clin Cancer Res. 23:1785–1796. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Carvalho BS and Irizarry RA: A framework for oligonucleotide microarray preprocessing. Bioinformatics. 26:2363–2367. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Smyth GK, Ritchie M, Thorne N and Wettenhall J: LIMMA: Linear models for microarray data. In: Bioinformatics and Computational Biology Solutions Using R and BioconductorSBH; 2005

19 

Hulsegge I, Kommadath A and Smits MA: Globaltest and GOEAST: Two different approaches for Gene Ontology analysis. BMC Proc. 3 (Suppl 4):S102009. View Article : Google Scholar : PubMed/NCBI

20 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

22 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39 (Database Issue). D561–D568. 2011. View Article : Google Scholar

23 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

25 

Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, Kim H, Cho A, Kim E, Lee T, et al: TRRUST: A reference database of human transcriptional regulatory interactions. Sci Rep. 5:114322015. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Norabuena E: Characterization of a human neuroblastoma cell line and its differentiation into dopamine neurons (unpublished PhD thesis)Mount Holyoke College; 2012

28 

Candito M, Thyss A, Albertini M, Deville A, Politano S, Mariani R and Chambon P: Methylated catecholamine metabolites for diagnosis of neuroblastoma. Med Pediatr Oncol. 20:215–220. 1992. View Article : Google Scholar : PubMed/NCBI

29 

Bozzi F, Luksch R, Collini P, Gambirasio F, Barzanò E, Polastri D, Podda M, Brando B and Fossati-Bellani F: Molecular detection of dopamine decarboxylase expression by means of reverse transcriptase and polymerase chain reaction in bone marrow and peripheral blood: Utility as a tumor marker for neuroblastoma. Diagn Mol Pathol. 13:135–143. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Lo Vasco VR: 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours. J Neurooncol. 103:409–416. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Zhou Y, Wing MR, Sondek J and Harden TK: Molecular cloning and characterization of PLC-eta2. Biochem J. 391:667–676. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Modarressi MH, Taylor KE and Wolfe J: Cloning, characterization, and mapping of the gene encoding the human G protein gamma 2 subunit. Biochem Biophys Res Commun. 272:610–615. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Shuba YM, Teslenko VI, Savchenko AN and Pogorelaya NH: The effect of permeant ions on single calcium channel activation in mouse neuroblastoma cells: Ion-channel interaction. J Physiol. 443:25–44. 1991. View Article : Google Scholar : PubMed/NCBI

34 

Barton AC and Sibley DR: Agonist-induced desensitization of D1-dopamine receptors linked to adenylyl cyclase activity in cultured NS20Y neuroblastoma cells. Mol Pharmacol. 38:531–541. 1990.PubMed/NCBI

35 

Fukunaga K and Miyamoto E: Role of MAP kinase in neurons. Mol Neurobiol. 16:79–95. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Morón JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, Lin ZC, Wang JB, Javitch JA, Galli A and Shippenberg TS: Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport apacity. J Neurosci. 23:8480–8488. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Ries V, Silva RM, Oo TF, Cheng HC, Rzhetskaya M, Kholodilov N, Flavell RA, Kuan CY, Rakic P and Burke RE: JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration. J Neurochem. 107:1578–1588. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Herdman ML, Marcelo A, Ying H, Niles RM, Dhar S and Kiningham KK: Thimerosal Induces Apoptosis in a Neuroblastoma Model via the cJun N-terminal kinase pathway. Toxicol Sci. 92:246–253. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Uribe V: The beta-tubulin gene TUBB2B is involved in a large spectrum of neuronal migration disorders. Clin Genet. 77:34–35. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, Hu Y, Hu D, Zhao B, Cerovina T, et al: Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for xenopus eye and neural development. Cell. 151:1200–1213. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Chang SH, Jung IS, Han GY, Kim NH, Kim HJ and Kim CW: Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease. Biochem Biophys Res Commun. 430:670–675. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Pope WB, Lambert MP, Leypold B, Seupaul R, Sletten L, Krafft G and Klein WL: Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY5Y. Exp Neurol. 126:185–194. 1994. View Article : Google Scholar : PubMed/NCBI

44 

Lorkowski S: RASL11B (RAS-like, family 11, member B). Atlas Genet Cytogenet Oncol Haematol. 14:747–750. 2010.

45 

Stolle K, Schnoor M, Fuellen G, Spitzer M, Cullen P and Lorkowski S: Cloning, genomic organization, and tissue-specific expression of the RASL11B gene. Biochim Biophys Acta. 1769:514–524. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF and Cui H: Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett. 9:2507–2514. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Bachetti T, Di Paolo D, Di Lascio S, Mirisola V, Brignole C, Bellotti M, Caffa I, Ferraris C, Fiore M, Fornasari D, et al: PHOX2B-mediated regulation of ALK expression: In vitro identification of a functional relationship between two genes involved in neuroblastoma. PLoS One. 5(pii): e131082010. View Article : Google Scholar : PubMed/NCBI

48 

Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Judware R and Culp LA: Concomitant down-regulation of expression of integrin subunits by N-myc in human neuroblastoma cells: Differential regulation of alpha2, alpha3 and beta1. Oncogene. 14:1341–1350. 1997. View Article : Google Scholar : PubMed/NCBI

50 

Peng H, Ke XX, Hu R, Yang L, Cui H and Wei Y: Essential role of GATA3 in regulation of differentiation and cell proliferation in SK-N-SH neuroblastoma cells. Mol Med Rep. 11:881–886. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Fischer I, Shea TB, Sapirstein VS and Kosik KS: Expression and distribution of microtubule-associated protein 2 (MAP2) in neuroblastoma and primary neuronal cells. Brain Res. 25:99–109. 1986. View Article : Google Scholar

52 

Braekeveldt N, Wigerup C, Gisselsson D, Mohlin S, Merselius M, Beckman S, Jonson T, Börjesson A, Backman T, Tadeo I, et al: Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer. 136:E252–E261. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Brodeur GM: Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, J., & Liu, J. (2019). Upregulation of MAPK10, TUBB2B and RASL11B may contribute to the development of neuroblastoma. Molecular Medicine Reports, 20, 3475-3486. https://doi.org/10.3892/mmr.2019.10589
MLA
Liu, J., Li, Y."Upregulation of MAPK10, TUBB2B and RASL11B may contribute to the development of neuroblastoma". Molecular Medicine Reports 20.4 (2019): 3475-3486.
Chicago
Liu, J., Li, Y."Upregulation of MAPK10, TUBB2B and RASL11B may contribute to the development of neuroblastoma". Molecular Medicine Reports 20, no. 4 (2019): 3475-3486. https://doi.org/10.3892/mmr.2019.10589