Open Access

Circular RNAs: A novel target among non‑coding RNAs with potential roles in malignant tumors (Review)

  • Authors:
    • Weisong Zhao
    • Man Dong
    • Jinru Pan
    • Yajie Wang
    • Jingyi Zhou
    • Jianjun Ma
    • Shaoyang Liu
  • View Affiliations

  • Published online on: September 2, 2019     https://doi.org/10.3892/mmr.2019.10637
  • Pages: 3463-3474
  • Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Circular RNAs (circRNAs) are a class of non‑coding RNAs that are generated via alternative back‑splicing, which connects the terminal 5' and 3'ends. Due to their unique loop structure, circRNAs are resistant to ribonucleases and more stable than linear RNAs. In vivo, they are usually highly conserved and stably expressed in tissue/developmental‑stage‑specific manners. Generally, circRNAs function as microRNA sponges and splicing regulators, as well as in protein binding and transcription. Some circRNAs contain open reading frames with internal ribosomal entry site elements and can thus encode specific proteins. Previously, circRNAs were thought to be erroneous splicing products or by‑products of mRNA splicing. With the development of the next‑generation sequencing techniques, it has become increasingly clear that circRNAs are abundantly widespread in eukaryotes and that they play significant roles in malignant tumor progression. The present review briefly introduces the biogenesis and functions of circRNAs, as well as summarizes recent research in several common malignancies. The present review also addresses the prospects of circRNAs in clinical applications.

References

1 

Dong Y, Xu S, Liu J, Ponnusamy M, Zhao Y, Zhang Y, Wang Q, Li P and Wang K: Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci. 14:1133–1141. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Abu N and Jamal R: Circular RNAs as promising biomarkers: A mini-review. Front Physiol. 7:3552016. View Article : Google Scholar : PubMed/NCBI

6 

Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI

7 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7:e307332012. View Article : Google Scholar : PubMed/NCBI

9 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Pasman Z, Been MD and Garcia-Blanco MA: Exon circularization in mammalian nuclear extracts. RNA. 2:603–610. 1996.PubMed/NCBI

11 

Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Cocquet J, Chong A, Zhang G and Veitia RA: Reverse transcriptase template switching and false alternative transcripts. Genomics. 88:127–131. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Lopez-Jimenez E, Rojas AM and Andrés-León E: RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol. 1087:17–33. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Dong R, Ma XK, Li GW and Yang L: CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics. 16:226–233. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Glazar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. RNA. 20:1666–1670. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Figueiredo C, Camargo MC, Leite M, Fuentes-Pananá EM, Rabkin CS and Machado JC: Pathogenesis of gastric cancer: Genetics and molecular classification. Curr Top Microbiol Immunol. 400:277–304. 2017.PubMed/NCBI

17 

Wu Z, Shi W and Jiang C: Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 502:465–471. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F, et al: Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 38:2844–2859. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Rong D, Tang W, Li Z, Zhou J, Shi J, Wang H and Cao H: Novel insights into circular RNAs in clinical application of carcinomas. Onco Targets Ther. 10:2183–2188. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z and Chen Y: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI

21 

Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W, Jiang B, Qin H, Guo X, Liu M, et al: Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer. 18:1112019. View Article : Google Scholar : PubMed/NCBI

22 

Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, Prasad N, Levy S, Coffey RJ, Patton JG and Zhang B: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 6:379822016. View Article : Google Scholar : PubMed/NCBI

23 

Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Yang C, Wei Y, Yu L and Xiao Y: Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing. Med Sci Monit. 25:2785–2791. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Xiong S, Peng H, Ding X, Wang X, Wang L, Wu C, Wang S, Xu H and Liu Y: Circular RNA expression profiling and the potential role of hsa_circ_0089172 in Hashimoto's thyroiditis via sponging miR125a-3p. Mol Ther Nucleic Acids. 17:38–48. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Guarnerio J, Zhang Y, Cheloni G, Panella R, Mae Katon J, Simpson M, Matsumoto A, Papa A, Loretelli C, Petri A, et al: Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res. Jun 17–2019.doi: 10.1038/s41422-019-0192-1 (Epub ahead of print). View Article : Google Scholar

27 

Liang D and Wilusz JE: Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28:2233–2247. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Muller S and Appel B: In vitro circularization of RNA. RNA Biol. 14:1018–1027. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL and Yang L: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26:1277–1287. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11:212018. View Article : Google Scholar : PubMed/NCBI

32 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L and Chen LL: Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 67:214–227.e7. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Wang Z: Not just a sponge: New functions of circular RNAs discovered. Sci China Life Sci. 58:407–408. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 323:1205–1208. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 323:1208–1211. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfò R, Peruzzi G, et al: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 8:147412017. View Article : Google Scholar : PubMed/NCBI

42 

Borchardt EK, Meganck RM, Vincent HA, Ball CB, Ramos SBV, Moorman NJ, Marzluff WF and Asokan A: Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. RNA. 23:619–627. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Liao Q, Wang B, Li X and Jiang G: miRNAs in acute myeloid leukemia. Oncotarget. 8:3666–3682. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Dragomir M, Mafra ACP, Dias SMG, Vasilescu C and Calin GA: Using microRNA networks to understand cancer. Int J Mol Sci. 19(pii): E18712018. View Article : Google Scholar : PubMed/NCBI

45 

Fumagalli MR, Zapperi S and La Porta CAM: Impact of the cross-talk between circular and messenger RNAs on cell regulation. J Theor Biol. 454:386–395. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI

47 

Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357(pii): eaam85262017. View Article : Google Scholar : PubMed/NCBI

48 

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI

49 

Chen H, Liu T, Liu J, Feng Y, Wang B, Wang J, Bai J, Zhao W, Shen Y, Wang X, et al: Circ-ANAPC7 is upregulated in acute myeloid leukemia and appears to target the MiR-181 family. Cell Physiol Biochem. 47:1998–2007. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Du WW, Zhang C, Yang W, Yong T, Awan FM and Yang BB: Identifying and characterizing circRNA-protein interaction. Theranostics. 7:4183–4191. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Gartel A and Radhakrishnan SK: Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 65:3980–3985. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Abdelmohsen K, Panda A, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Chen CY and Science S: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI

58 

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a Circular RNA that Can Be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel Role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 1102018.doi: 10.1093/jnci/djx166.

60 

Zhao J, Wu J, Xu T, Yang Q, He J and Song X: IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics. 45:403–406. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Kwek K, Murphy S, Furger A, Thomas B, O'Gorman W, Kimura H, Proudfoot NJ and Akoulitchev A: U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol. 9:800–805. 2002.PubMed/NCBI

63 

Huang C and Shan G: What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription. 6:61–64. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R and Li H: The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 414:301–309. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Somervaille TC and Cleary ML: Grist for the MLL: How do MLL oncogenic fusion proteins generate leukemia stem cells? Int J Hematol. 91:735–741. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP: Oncogenic role of Fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, Liu Y, Liu L, Wei YQ and Peng Y: Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 28:693–695. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Zhou LH, Yang YC, Zhang RY, Wang P, Pang MH and Liang LQ: CircRNA_0023642 promotes migration and invasion of gastric cancer cells by regulating EMT. Eur Rev Med Pharmacol Sci. 22:2297–2303. 2018.PubMed/NCBI

69 

Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y and Wang S: The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 17:1602018. View Article : Google Scholar : PubMed/NCBI

70 

Zhang XL, Xu LL and Wang F: Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int. 41:1056–1064. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Huang Y, Yu P, Li W, Ren G, Roberts AI, Cao W, Zhang X, Su J, Chen X, Chen Q, et al: p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene. 33:3830–3838. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, et al: Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer. 144:2501–2515. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Wang J, Zhang Q, Zhou S, Xu H, Wang D, Feng J, Zhao J and Zhong S: Circular RNA expression in exosomes derived from breast cancer cells and patients. Epigenomics. 11:411–421. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Sun HD, Xu ZP, Sun ZQ, Zhu B, Wang Q, Zhou J, Jin H, Zhao A, Tang WW and Cao XF: Down-regulation of circPVRL3 promotes the proliferation and migration of gastric cancer cells. Sci Rep. 8:101112018. View Article : Google Scholar : PubMed/NCBI

75 

Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R and Guo J: Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer. 116:626–633. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Montagner A, Le Cam L and Guillou H: β-catenin oncogenic activation rewires fatty acid catabolism to fuel hepatocellular carcinoma. Gut. 68:183–185. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L and Ma Y: Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun. 499:1044–1049. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Jiang W, Wen D, Gong L, Wang Y, Liu Z and Yin F: Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET. Biochem Biophys Res Commun. 500:211–216. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Seneviratne S, Lawrenson R, Scott N, Kim B, Shirley R and Campbell I: Breast cancer biology and ethnic disparities in breast cancer mortality in new zealand: A cohort study. PLoS One. 10:e01235232015. View Article : Google Scholar : PubMed/NCBI

80 

Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, Yang DC and Wang XL: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 36:901–908. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, et al: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 37:5829–5842. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Wan L, Zhang L, Fan K, Cheng ZX, Sun QC and Wang JJ: Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway. Biomed Res Int. 2016:15794902016. View Article : Google Scholar : PubMed/NCBI

83 

Ma X, Yang X, Bao W, Li S, Liang S, Sun Y, Zhao Y, Wang J and Zhao C: Circular RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via miR-1275/FOXK1 axis. Biochem Biophys Res Commun. 498:1009–1015. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Zhang S, Zeng X, Ding T, Guo L, Li Y, Ou S and Yuan H: Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep. 8:28782018. View Article : Google Scholar : PubMed/NCBI

85 

Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Jin P, Huang Y, Zhu P, Zou Y, Shao T and Wang O: CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling. Biochem Biophys Res Commun. 503:1570–1574. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, Xu Y, Hu J, Dong G, Xu PL and Yin R: Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 6:355762016. View Article : Google Scholar : PubMed/NCBI

88 

Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, Wang WF and Fang MH: CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 9:8382018. View Article : Google Scholar : PubMed/NCBI

89 

Xiao-Long M, Kun-Peng Z and Chun-Lin Z: Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer. 9:1856–1862. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Huang L, Chen M, Pan J and Yu W: Circular RNA circNASP modulates the malignant behaviors in osteosarcoma via miR-1253/FOXF1 pathway. Biochem Biophys Res Commun. 500:511–517. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Song Y and Li J: Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun. 495:2369–2375. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Xia L, Wu L, Bao J, Li Q, Chen X, Xia H and Xia R: Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/β-catenin pathway. Biochem Biophys Res Commun. 503:385–390. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, Zhang R, Chen Z and Wang K: Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis. 9:6512018. View Article : Google Scholar : PubMed/NCBI

94 

Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, et al: Role of Circular RNA DLEU2 in Human Acute Myeloid Leukemia. Mol Cell Biol. 38(pii): e00259–18. 2018.PubMed/NCBI

95 

Ma HB, Yao YN, Yu JJ, Chen XX and Li HF: Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res. 10:592–604. 2018.PubMed/NCBI

96 

Liu J, Wang D, Long Z, Liu J and Li W: CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p /519-5p family and modulating the expression of CBX8. Cell Physiol Biochem. 173–184. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Yang X, Yuan W, Tao J, Li P, Yang C, Deng X, Zhang X, Tang J, Han J, Wang J, et al: Identification of circular RNA signature in bladder cancer. J Cancer. 8:3456–3463. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI

100 

Huang G, Li S, Yang N, Zou Y, Zheng D and Xiao T: Recent progress in circular RNAs in human cancers. Cancer Lett. 404:8–18. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, et al: Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 127:e1–e11. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M and Wolkers MC: Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 46:8168–8180. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Geng Y, Jiang J and Wu C: Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 11:982018. View Article : Google Scholar : PubMed/NCBI

105 

Wang T, Shigdar S, Shamaileh HA, Gantier MP, Yin W, Xiang D, Wang L, Zhou SF, Hou Y, Wang P, et al: Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett. 387:77–83. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Frazier KS: Antisense oligonucleotide therapies: The promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol. 43:78–89. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, W., Dong, M., Pan, J., Wang, Y., Zhou, J., Ma, J., & Liu, S. (2019). Circular RNAs: A novel target among non‑coding RNAs with potential roles in malignant tumors (Review). Molecular Medicine Reports, 20, 3463-3474. https://doi.org/10.3892/mmr.2019.10637
MLA
Zhao, W., Dong, M., Pan, J., Wang, Y., Zhou, J., Ma, J., Liu, S."Circular RNAs: A novel target among non‑coding RNAs with potential roles in malignant tumors (Review)". Molecular Medicine Reports 20.4 (2019): 3463-3474.
Chicago
Zhao, W., Dong, M., Pan, J., Wang, Y., Zhou, J., Ma, J., Liu, S."Circular RNAs: A novel target among non‑coding RNAs with potential roles in malignant tumors (Review)". Molecular Medicine Reports 20, no. 4 (2019): 3463-3474. https://doi.org/10.3892/mmr.2019.10637