RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin‑1β pathway

  • Authors:
    • Pengrong Lou
    • Shitao Zou
    • Zengfu Shang
    • Chao He
    • Aidi Gao
    • Shunyu Hou
    • Jundong Zhou
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/mmr.2019.10564
  • Pages: 3415-3423
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The E3 ubiquitin ligase RAD18 has been identified as an oncoprotein that exhibits prometastatic properties in various types of cancer; however, the role of RAD18 in cervical cancer (CC) remains unclear. In the present study, it was revealed that increased expression of RAD18 was associated with worse prognosis of patients with CC. Knockdown of endogenous RAD18 suppressed the motility and invasiveness of CC cells, as evaluated by Transwell assays. mRNA sequencing revealed that silencing RAD18 altered the expression profile of proinflammatory mediators, such as interleukin‑1β (IL‑1β). Furthermore, exogenous IL‑1β treatment rescued RAD18‑mediated CC cell invasion. These findings indicated an underlying mechanism via which RAD18 promotes CC progression, suggesting that RAD18 may be a potential biomarker and therapeutic target for malignant CC.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Wang JY and Chen LJ: The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep. 39:BSR201813772019. View Article : Google Scholar : PubMed/NCBI

3 

Oei AL, van Leeuwen CM, ten Cate R, Rodermond HM, Buist MR, Stalpers LJ, Crezee J, Kok HP, Medema JP and Franken NA: Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis. Cancer Res. 75:5120–5129. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Thanapprapasr D, Nartthanarung A, Likittanasombut P, Na Ayudhya NI, Charakorn C, Udomsubpayakul U, Subhadarbandhu T and Wilailak S: Bone metastasis in cervical cancer patients over a 10-year period. Int J Gynecol Cancer. 20:373–378. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Friedberg EC, Lehmann AR and Fuchs RP: Trading places: How do DNA polymerases switch during translesion DNA synthesis? Mol Cell. 18:499–505. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Ghosal G and Chen J: DNA damage tolerance: A double-edged sword guarding the genome. Transl Cancer Res. 2:107–129. 2013.PubMed/NCBI

9 

Kannouche PL, Wing J and Lehmann AR: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 14:491–500. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Bailly V, Prakash S and Prakash L: Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol Cell Biol. 17:4536–4543. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Xin H, Lin W, Sumanasekera W, Zhang Y, Wu X and Wang Z: The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res. 28:2847–2854. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Albertella MR, Lau A and O'Connor MJ: The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst). 4:583–593. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Wong RP, Aguissa-Touré AH, Wani AA, Khosravi S, Martinka M and Li G: Elevated expression of Rad18 regulates melanoma cell proliferation. Pigment Cell Melanoma Res. 25:213–218. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Zhou J, Zhang S, Xie L, Liu P, Xie F, Wu J, Cao J and Ding WQ: Overexpression of DNA polymerase iota (Poli) in esophageal squamous cell carcinoma. Cancer Sci. 103:1574–1579. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Zou S, Yang J, Guo J, Su Y, He C, Wu J, Yu L, Ding WQ and Zhou J: RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett. 417:65–74. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Kay FU, Kandathil A, Batra K, Saboo SS, Abbara S and Rajiah P: Revisions to the Tumor, Node, Metastasis staging of lung cancer (8th edition): Rationale, radiologic findings and clinical implications. World J Radiol. 9:269–279. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Robert J: Biology of cancer metastasis. Bull Cancer. 100:333–342. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Fusella F, Seclì L, Busso E, Krepelova A, Moiso E, Rocca S, Conti L, Annaratone L, Rubinetto C, Mello-Grand M, et al: The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun. 8:16362017. View Article : Google Scholar : PubMed/NCBI

20 

Karki R, Man SM and Kanneganti TD: Inflammasomes and cancer. Cancer Immunol Res. 5:94–99. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Huang B, Zhao J, Unkeless JC, Feng ZH and Xiong H: TLR signaling by tumor and immune cells: A double-edged sword. Oncogene. 27:218–224. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Dinarello CA: Biologic basis for interleukin-1 in disease. Blood. 87:2095–2147. 1996.PubMed/NCBI

23 

Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU and Fatatis A: Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res. 73:3297–3305. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Wittekind C and Neid M: Cancer invasion and metastasis. Oncology. 69 (Suppl 1):S14–S16. 2005. View Article : Google Scholar

25 

Zhao S, Yao D, Chen J, Ding N and Ren F: MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One. 10:e01209052015. View Article : Google Scholar : PubMed/NCBI

26 

Shi TY, Yang L, Yang G, Tu XY, Wu X, Cheng X and Wei Q: DNA polymerase ζ as a potential biomarker of chemoradiation resistance and poor prognosis for cervical cancer. Med Oncol. 30:5002013. View Article : Google Scholar : PubMed/NCBI

27 

Yang L, Shi T, Liu F, Ren C, Wang Z, Li Y, Tu X, Yang G and Cheng X: REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells. PLoS One. 10:e01203342015. View Article : Google Scholar : PubMed/NCBI

28 

Goodman A: HPV testing as a screen for cervical cancer. BMJ. 350:h23722015. View Article : Google Scholar : PubMed/NCBI

29 

Terzić J, Grivennikov S, Karin E and Karin M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Walch-Rückheim B, Mavrova R, Henning M, Vicinus B, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF and Smola S: Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of Th17 cells during cervical cancer progression. Cancer Res. 75:5248–5259. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Kelly PN, Romero DL, Yang Y, Shaffer AL III, Chaudhary D, Robinson S, Miao W, Rui L, Westlin WF, Kapeller R and Staudt LM: Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med. 212:2189–2201. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Mar AC, Chu CH, Lee HJ, Chien CW, Cheng JJ, Yang SH, Jiang JK and Lee TC: Interleukin-1 receptor type 2 acts with c-Fos to enhance the expression of interleukin-6 and vascular endothelial growth factor a in colon cancer cells and induce angiogenesis. J Biol Chem. 290:22212–22224. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Kwon MJ, Hong E, Choi Y, Kang DH and Oh ES: Interleukin-1α promotes extracellular shedding of syndecan-2 via induction of matrix metalloproteinase-7 expression. Biochem Biophys Res Commun. 446:487–492. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Ebelt ND, Cantrell MA and Van Den Berg CL: c-Jun N-terminal kinases mediate a wide range of targets in the metastatic cascade. Genes Cancer. 4:378–387. 2013. View Article : Google Scholar : PubMed/NCBI

35 

van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Song Z, Lin Y, Ye X, Feng C, Lu Y, Yang G and Dong C: Expression of IL-1α and IL-6 is associated with progression and prognosis of human cervical cancer. Med Sci Monit. 22:4475–4481. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Niebler M, Qian X, Höfler D, Kogosov V, Kaewprag J, Kaufmann AM, Ly R, Böhmer G, Zawatzky R, Rösl F and Rincon-Orozco B: Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: A novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog. 9:e10035362013. View Article : Google Scholar : PubMed/NCBI

38 

Pahl HL and Baeuerle PA: Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol. 69:1480–1484. 1995.PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lou, P., Zou, S., Shang, Z., He, C., Gao, A., Hou, S., & Zhou, J. (2019). RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin‑1β pathway. Molecular Medicine Reports, 20, 3415-3423. https://doi.org/10.3892/mmr.2019.10564
MLA
Lou, P., Zou, S., Shang, Z., He, C., Gao, A., Hou, S., Zhou, J."RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin‑1β pathway". Molecular Medicine Reports 20.4 (2019): 3415-3423.
Chicago
Lou, P., Zou, S., Shang, Z., He, C., Gao, A., Hou, S., Zhou, J."RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin‑1β pathway". Molecular Medicine Reports 20, no. 4 (2019): 3415-3423. https://doi.org/10.3892/mmr.2019.10564