Open Access

Cisplatin decreases cyclin D2 expression via upregulating miR‑93 to inhibit lung adenocarcinoma cell growth

  • Authors:
    • Ning Xie
    • Yuan‑Rong Liu
    • Yan‑Mei Li
    • Ya‑Nan Yang
    • Li Pan
    • Yu‑Bo Wei
    • Ping‑Yu Wang
    • You‑Jie Li
    • Shu‑Yang Xie
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/mmr.2019.10566
  • Pages: 3355-3362
  • Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs/miRs) serve important roles in the chemotherapeutic effect of anticancer drugs. To investigate the roles of miRNAs in cisplatin‑induced suppression of lung adenocarcinoma cell proliferation, A549 cells were treated with different concentrations of cisplatin. An MTT assay demonstrated that cisplatin inhibited A549 cell proliferation in a dose‑dependent manner. Cisplatin induced cell apoptosis and inhibited cell migration by increasing the levels of miR‑93, miR‑26a and miR‑26b. Furthermore, as an upstream factor, miR‑93 was proposed to regulate cyclin D2 expression in miR‑93‑transfected A549 cells. Cisplatin also induced Bcl‑2‑associated X protein expression, and decreased that of Bcl‑2 and c‑Myc in lung adenocarcinoma cells. In vivo analysis further supported that cisplatin inhibited lung adenocarcinoma cell growth by regulating cyclin D2 and miR‑93 expression. In conclusion, our findings demonstrated that cisplatin could effectively inhibit lung adenocarcinoma cell proliferation by decreasing cyclin D2 expression via miR‑93.

References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Smith W and Khuri FR: The care of the lung cancer patient in the 21st century: A new age. Semin Oncol 31 (2 Suppl 4). S11–S15. 2004.

3 

Testa U, Castelli G and Pelosi E: Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers (Basel). 10:E2482018. View Article : Google Scholar : PubMed/NCBI

4 

Rizvi NA, Hellmann MD, Brahmer JR, Juergens RA, Borghaei H, Gettinger S, Chow LQ, Gerber DE, Laurie SA, Goldman JW, et al: Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 34:2969–2979. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Mens MMJ and Ghanbari M: Cell cycle regulation of stem cells by MicroRNAs. Stem Cell Rev. 14:309–322. 2018. View Article : Google Scholar :

6 

Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L and Fan W: MicroRNA regulation of liver cancer stem cells. Am J Cancer Res. 8:1126–1141. 2018.PubMed/NCBI

7 

Qadir MI and Faheem A: miRNA: A diagnostic and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene Expr. 27:197–204. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Shomali N, Mansoori B, Mohammadi A, Shirafkan N, Ghasabi M and Baradaran B: MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother. 96:238–245. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Gao W, Lu X, Liu L, Xu J, Feng D and Shu Y: MiRNA-21: A biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther. 13:330–340. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Ma JG and Li XY: MicroRNAs are involved in the toxicity of microcystins. Toxin Rev. 36:165–175. 2017. View Article : Google Scholar

11 

Wu QB, Sheng X, Zhang N, Yang MW and Wang F: Role of microRNAs in the resistance of colorectal cancer to chemoradiotherapy. Mol Clin Oncol. 8:528–532. 2018.PubMed/NCBI

12 

Hong L, Yang Z, Ma J and Fan D: Function of miRNA in controlling drug resistance of human cancers. Curr Drug Targets. 14:1118–1127. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, et al: MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 7:1–9. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Deng H, Qianqian G, Ting J and Aimin Y: miR-539 enhances chemosensitivity to cisplatin in non-small cell lung cancer by targeting DCLK1. Biomed Pharmacother. 106:1072–1081. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Zhang X, Zhu J, Xing R, Tie Y, Fu H, Zheng X and Yu B: miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer. 77:488–494. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Ju J, Chen A, Deng Y, Liu M, Wang Y, Wang Y, Nie M, Wang C, Ding H, Yao B, et al: NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate slug expression. Nat Commun. 8:9282017. View Article : Google Scholar : PubMed/NCBI

17 

Zhang YX, Yue Z, Wang PY, Li YJ, Xin JX, Pang M, Zheng QY and Xie SY: Cisplatin upregulates MSH2 expression by reducing miR-21 to inhibit A549 cell growth. Biomed Pharmacother. 67:97–102. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Wang PY, Sun YX, Zhang S, Pang M, Zhang HH, Gao SY, Zhang C, Lv CJ and Xie SY: Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett. 587:2675–2681. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Zhang YX, Yan YF, Liu YM, Li YJ, Zhang HH, Pang M, Hu JX, Zhao W, Xie N, Zhou L, et al: Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth. Cell Death Dis. 7:e25282016. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Gao Y, Deng K, Liu X, Dai M, Chen X and Chen J and Chen J, Huang Y, Dai S and Chen J: Molecular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reaction validation. J Cell Biochem. 120:6370–6383. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, et al: MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J Biol Chem. 290:14245–14266. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Tan M, Wu J and Cai Y: Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 438:673–679. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Wang PY, Li YJ, Zhang S, Li ZL, Yue Z, Xie N and Xie SY: Regulating A549 cells growth by ASO inhibiting miRNA expression. Mol Cell Biochem. 339:163–171. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Qian Q, Sun W, Zhu W, Liu Y, Ge A, Ma Y, Zhang Y, Zeng X and Huang M: The role of microRNA-93 regulating angiopoietin2 in the formation of malignant pleural effusion. Cancer Med. 6:1036–1048. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Hahne JC and Valeri N: Non-Coding RNAs and resistance to anticancer drugs in gastrointestinal tumors. Front Oncol. 8:2262018. View Article : Google Scholar : PubMed/NCBI

27 

Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M and Yallapu MM: miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel). 10:E2892018. View Article : Google Scholar : PubMed/NCBI

28 

Lin YS, Lin YY, Yang YH, Lin CL, Kuan FC, Lu CN, Chang GH, Tsai MS, Hsu CM, Yeh RA, et al: Antrodia cinnamomea extract inhibits the proliferation of tamoxifen-resistant breast cancer cells through apoptosis and skp2/microRNAs pathway. BMC Complement Altern Med. 18:1522018. View Article : Google Scholar : PubMed/NCBI

29 

Chan LW, Wang F, Meng F, Wang L, Wong SC, Au JS, Yang S and Cho WC: MiR-30 family potentially targeting PI3K-SIAH2 predicted interaction network represents a novel putative theranostic panel in non-small cell lung cancer. Front Genet. 8:82017. View Article : Google Scholar : PubMed/NCBI

30 

Zhao L, Li R and Gan YH: Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis. 9:7472018. View Article : Google Scholar : PubMed/NCBI

31 

Cao L, Wan Q, Li F and Tang CE: MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep. 51:456–461. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Y, Huang S, Guo Y and Li L: MiR-1294 confers cisplatin resistance in ovarian Cancer cells by targeting IGF1R. Biomed Pharmacother. 106:1357–1363. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Markou A, Sourvinou I, Vorkas PA, Yousef GM and Lianidou E: Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer. 81:388–396. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Price C and Chen J: MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis. 1:53–63. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Sun CC, Li SJ, Zhang F, Zhang YD, Zuo ZY, Xi YY, Wang L and Li DJ: The novel miR-9600 suppresses tumor progression and promotes paclitaxel sensitivity in non-small-cell lung cancer through altering STAT3 expression. Mol Ther Nucleic Acids. 5:e3872016. View Article : Google Scholar : PubMed/NCBI

36 

Zhang P: The cell cycle and development: Redundant roles of cell cycle regulators. Curr Opin Cell Biol. 11:655–662. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Blanco L and Tirado CA: Testicular germ cell tumors: A cytogenomic update. J Assoc Genet Technol. 44:128–133. 2018.PubMed/NCBI

38 

Takano Y, Kato Y, van Diest PJ, Masuda M, Mitomi H and Okayasu I: Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. Am J Pathol. 156:585–594. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Mermelshtein A, Gerson A, Walfisch S, Delgado B, Shechter-Maor G, Delgado J, Fich A and Gheber L: Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer. 93:338–345. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, et al: Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature. 384:470–474. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, et al: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xie, N., Liu, Y., Li, Y., Yang, Y., Pan, L., Wei, Y. ... Xie, S. (2019). Cisplatin decreases cyclin D2 expression via upregulating miR‑93 to inhibit lung adenocarcinoma cell growth. Molecular Medicine Reports, 20, 3355-3362. https://doi.org/10.3892/mmr.2019.10566
MLA
Xie, N., Liu, Y., Li, Y., Yang, Y., Pan, L., Wei, Y., Wang, P., Li, Y., Xie, S."Cisplatin decreases cyclin D2 expression via upregulating miR‑93 to inhibit lung adenocarcinoma cell growth". Molecular Medicine Reports 20.4 (2019): 3355-3362.
Chicago
Xie, N., Liu, Y., Li, Y., Yang, Y., Pan, L., Wei, Y., Wang, P., Li, Y., Xie, S."Cisplatin decreases cyclin D2 expression via upregulating miR‑93 to inhibit lung adenocarcinoma cell growth". Molecular Medicine Reports 20, no. 4 (2019): 3355-3362. https://doi.org/10.3892/mmr.2019.10566