Open Access

TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production

  • Authors:
    • Chun Fan
    • Qiuxia Ji
    • Chunyang Zhang
    • Shuo Xu
    • Hui Sun
    • Zhiyuan Li
  • View Affiliations

  • Published online on: August 9, 2019     https://doi.org/10.3892/mmr.2019.10580
  • Pages: 3123-3130
  • Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissue. Transforming growth factor (TGF) β1, a potent stimulator of tissue regeneration, is extensive and abundant in the bone matrix. However, the effect of TGF‑β1 in periodontal differentiation remains to be elucidated. The present study aimed to evaluate the effect of TGF‑β1 on human PDLSCs. PDLSCs were isolated using CD146 microbeads, and characterized by flow cytometry. The present study demonstrated that treatment with TGF‑β1 induced PDLSC senescence, characterized by increases in senescence‑associated beta‑galactosidase activity and elevation of both p16 and p21 expression. Furthermore, TGF‑β1 treatment demonstrated the capacity to induce the production of reactive oxygen species (ROS). Of note, addition of a ROS scavenger successfully rescued the TGF‑β1‑induced PDLSC senescence. Thus, the present results indicated that TGF‑β1 may serve a vital role in PDLSC senescence, and thus represent a potential target involved in the fabrication and formation of hard tissue for clinical treatment.

References

1 

Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S and Wang S: Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells. 26:1065–1073. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Huang GT, Gronthos S and Shi S: Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res. 88:792–806. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Lekic P and McCulloch CA: Periodontal ligament cell population: The central role of fibroblasts in creating a unique tissue. Anat Rec. 245:327–341. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Kao RT, Murakami S and Beirne OR: The use of biologic mediators and tissue engineering in dentistry. Periodontol 2000. 50:127–153. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Li X, Yang H, Zhang Z, Yan Z, Lv H, Zhang Y and Wu B: Concentrated growth factor exudate enhances the proliferation of human periodontal ligament cells in the presence of TNF-α. Mol Med Rep. 19:943–950. 2019.PubMed/NCBI

6 

Hyun SY, Lee JH, Kang KJ and Jang YJ: Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of human periodontal ligament stem cells. Mol Cells. 40:550–557. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Shi Y and Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Wikesjo UM, Razi SS, Sigurdsson TJ, Tatakis DN, Lee MB, Ongpipattanakul B, Nguyen T and Hardwick R: Periodontal repair in dogs: Effect of recombinant human transforming growth factor-beta1 on guided tissue regeneration. J Clin Periodontol. 25:475–481. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Kawahara T, Yamashita M, Ikegami K, Nakamura T, Yanagita M, Yamada S, Kitamura M and Murakami S: TGF-beta negatively regulates the BMP2-dependent early commitment of periodontal ligament cells into hard tissue forming cells. PLoS One. 10:e01255902015. View Article : Google Scholar : PubMed/NCBI

10 

De Gorter DJ, van Dinther M, Korchynskyi O and ten Dijke P: Biphasic effects of transforming growth factor β on bone morphogenetic protein-induced osteoblast differentiation. J Bone Miner Res. 26:1178–1187. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA and Hurle JM: Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 284:29988–29996. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL and van Deursen JM: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479:232–236. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell. 153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Burova E, Borodkina A, Shatrova A and Nikolsky N: Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev. 2013:4749312013. View Article : Google Scholar : PubMed/NCBI

15 

Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, et al: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 15:978–990. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Burton DG and Faragher RG: Cellular senescence: From growth arrest to immunogenic conversion. Age. 37:272015. View Article : Google Scholar : PubMed/NCBI

17 

Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, et al: JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci USA. 112:6301–6310. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R and Huang D: Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep. 19:759–770. 2019.PubMed/NCBI

19 

Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC and Ozturk M: Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 52:966–974. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Hubackova S, Krejcikova K, Bartek J and Hodny Z: IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging. 4:932–951. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Li ZY, Chen ZL, Zhang T, Wei C and Shi WY: TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging (Albany NY). 8:2337–2354. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Debacq-Chainiaux F, Erusalimsky JD, Campisi J and Toussaint O: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 4:1798–1806. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Velarde MC, Flynn JM, Day NU, Melov S and Campisi J: Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY). 4:3–12. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Wang P, Wang Y, Tang W, Wang X, Pang Y, Yang S, Wei Y, Gao H, Wang D and Cao Z: Bone morphogenetic protein-9 enhances osteogenic differentiation of human periodontal ligament stem cells via the JNK pathway. PLoS One. 12:e01691232017. View Article : Google Scholar : PubMed/NCBI

27 

Wada N, Menicanin D, Shi S, Bartold PM and Gronthos S: Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 219:667–676. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Gronthos S, Mrozik K, Shi S and Bartold PM: Ovine periodontal ligament stem cells: Isolation, characterization, and differentiation potential. Calcif Tissue Int. 79:310–317. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y and Morita I: Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A. 23:367–377. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Iwasaki K, Komaki M, Yokoyama N, Tanaka Y, Taki A, Honda I, Kimura Y, Takeda M, Akazawa K, Oda S, et al: Periodontal regeneration using periodontal ligament stem cell-transferred amnion. Tissue Eng Part A. 20:693–704. 2014.PubMed/NCBI

31 

Nair PN: Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 15:348–381. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Kim AR, Ahn KB, Kim HY, Seo HS, Kum KY, Yun CH and Han SH: Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells. Mol Immunol. 91:218–224. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wang F, Guan M, Wei L and Yan H: IL18 promotes the secretion of matrix metalloproteinases in human periodontal ligament fibroblasts by activating NF-κB signaling. Mol Med Rep. 19:703–711. 2019.PubMed/NCBI

34 

Bottinger EP, Letterio JJ and Roberts AB: Biology of TGF-beta in knockout and transgenic mouse models. Kidney Int. 51:1355–1360. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Nokhbehsaim M, Winter J, Rath B, Jäger A, Jepsen S and Deschner J: Effects of enamel matrix derivative on periodontal wound healing in an inflammatory environment in vitro. J Clin Periodontol. 38:479–490. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Bosshardt DD, Stadlinger B and Terheyden H: Cell-to-cell communication-periodontal regeneration. Clin Oral Implants Res. 26:229–239. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Rodier F and Campisi J: Four faces of cellular senescence. J Cell Biol. 192:547–556. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Coppé JP, Desprez PY, Krtolica A and Campisi J: The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 5:99–118. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Serra MP, Marongiu F, Sini M and Laconi E: Hepatocyte senescence in vivo following preconditioning for liver repopulation. Hepatology. 56:760–768. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Sculean A, Chapple IL and Giannobile WV: Wound models for periodontal and bone regeneration: The role of biologic research. Periodontol 2000. 68:7–20. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Li ZY, Liu T, Ma JW, Guo Q, Ma L, Lv QL, Jiang Y, Wei C and Zhang JS: TGF-β induces corneal endothelial senescence via increase of mitochondrial reactive oxygen species in chronic corneal allograft failure. Aging (Albany NY). 10:3474–3485. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fan, C., Ji, Q., Zhang, C., Xu, S., Sun, H., & Li, Z. (2019). TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production. Molecular Medicine Reports, 20, 3123-3130. https://doi.org/10.3892/mmr.2019.10580
MLA
Fan, C., Ji, Q., Zhang, C., Xu, S., Sun, H., Li, Z."TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production". Molecular Medicine Reports 20.4 (2019): 3123-3130.
Chicago
Fan, C., Ji, Q., Zhang, C., Xu, S., Sun, H., Li, Z."TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production". Molecular Medicine Reports 20, no. 4 (2019): 3123-3130. https://doi.org/10.3892/mmr.2019.10580