Open Access

Berberine ameliorates CCl4‑induced liver injury in rats through regulation of the Nrf2‑Keap1‑ARE and p53 signaling pathways

  • Authors:
    • Chun‑Yang Han
    • Tao‑Tao Sun
    • Guang‑Pei Xv
    • Si‑Si Wang
    • Jin‑Gang Gu
    • Cui‑Yan Liu
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/mmr.2019.10551
  • Pages: 3095-3102
  • Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Berberine (BBR) is an isoquinoline alkaloid, reported to have multiple pharmacological functions. However, its effects against CCl4‑induced oxidative damage remain poorly studied. Therefore, the present study investigated the protective action of BBR, and its antioxidant mechanisms, against CCl4‑induced liver injury in rats. A total of 48 rats were randomly arranged into six groups: Control; model; positive control (PC); BBR low‑dose (BL); BBR middle‑dose (BM); and BBR high‑dose (BH). The BL, BM and BH animals received BBR (5, 10 and 15 mg/kg by weight, respectively) orally for 7 consecutive days. Rats in the PC group were given silymarin (150 mg/kg), and the control and model groups were administered distilled water orally. At the end of the experiment, blood samples and livers were collected. To measure the liver biochemical indices, the reactive oxygen species (ROS) generation and the expression levels of related genes and protein, the following methods were used: An automatic biochemical analyzer; flow cytometry; spectrophotometry; reverse transcription‑quantitative PCR; western blotting; and hematoxylin and eosin staining. The results revealed that BBR significantly decreased the serum levels of alanine transaminase, aspartate transaminase and alkaline phosphatase, and increased those of glutathione and superoxide dismutase, but decreased malondialdehyde activity in hepatic tissue, and significantly decreased the reactive oxygen species level in hepatocytes. In hepatic tissue, the expressions of nuclear factor erythroid 2‑related factor 2 (Nrf2), kelch‑like ECH‑associated protein 1 (Keap-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), heme oxygenase 1 (HO‑1), Bcl‑2 and Bcl‑xL mRNA, and HO‑1 protein were elevated, and the expression of p53 mRNA was decreased, particularly in the BH group (15 mg/kg). In conclusion, BBR exerts a protective action against CCl4‑induced acute liver injury in rats via effectively regulating the expression of Nrf2‑Keap1‑antioxidant responsive element‑related genes and proteins, and inhibiting p53 pathway‑mediated hepatocyte apoptosis.

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Han, C., Sun, T., Xv, G., Wang, S., Gu, J., & Liu, C. (2019). Berberine ameliorates CCl4‑induced liver injury in rats through regulation of the Nrf2‑Keap1‑ARE and p53 signaling pathways. Molecular Medicine Reports, 20, 3095-3102. https://doi.org/10.3892/mmr.2019.10551
MLA
Han, C., Sun, T., Xv, G., Wang, S., Gu, J., Liu, C."Berberine ameliorates CCl4‑induced liver injury in rats through regulation of the Nrf2‑Keap1‑ARE and p53 signaling pathways". Molecular Medicine Reports 20.4 (2019): 3095-3102.
Chicago
Han, C., Sun, T., Xv, G., Wang, S., Gu, J., Liu, C."Berberine ameliorates CCl4‑induced liver injury in rats through regulation of the Nrf2‑Keap1‑ARE and p53 signaling pathways". Molecular Medicine Reports 20, no. 4 (2019): 3095-3102. https://doi.org/10.3892/mmr.2019.10551