Open Access

Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray

  • Authors:
    • Junkui Sun
    • Hongen Xu
    • Muge Qi
    • Chi Zhang
    • Jianxiang Shi
  • View Affiliations

  • Published online on: July 31, 2019     https://doi.org/10.3892/mmr.2019.10543
  • Pages: 3075-3084
  • Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Osteosarcoma (OS) is one of the most malignant tumors in children and young adults. To better understand the underlying mechanism, five related datasets deposited in the Gene Expression Omnibus were included in the present study. The Bioconductor ‘limma’ package was used to identify differentially expressed genes (DEGs) and the ‘Weighted Gene Co‑expression Network Analysis’ package was used to construct a weighted gene co‑expression network to identify key modules and hub genes, associated with OS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes overrepresentation analyses were used for functional annotation. The results indicated that 1,405 genes were dysregulated in OS, including 927 upregulated and 478 downregulated genes, when the cut off value was set at a ≥2 fold‑change and an adjusted P‑value of P<0.01 was used. Functional annotation of DEGs indicated that these genes were involved in the extracellular matrix (ECM) and that they function in several processes, including biological adhesion, ECM organization, cell migration and leukocyte migration. These findings suggested that dysregulation of the ECM shaped the tumor microenvironment and modulated the OS hallmark. Genes assigned to the yellow module were positively associated with OS and could contribute to the development of OS. In conclusion, the present study has identified several key genes that are potentially druggable genes or therapeutics targets in OS. Functional annotations revealed that the dysregulation of the ECM may contribute to OS development and, therefore, provided new insights to improve our understanding of the mechanisms underlying OS.

References

1 

Luetke A, Meyers PA, Lewis I and Juergens H: Osteosarcoma treatment-where do we stand? A state of the art review. Cancer Treat Rev. 40:523–532. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Ottaviani G and Jaffe N: The epidemiology of osteosarcoma. Pediatric and adolescent osteosarcoma, Springer. 3–13. 2009. View Article : Google Scholar

3 

Grimer RJ: Surgical options for children with osteosarcoma. Lancet Oncol. 6:85–92. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Akiyama T, Dass CR and Choong PF: Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity and apoptosis pathway. Mol Cancer Ther. 7:3461–3469. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and end results program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Kempf-Bielack B, Bielack SS, Jürgens H, Branscheid D, Berdel WE, Exner GU, Göbel U, Helmke K, Jundt G, Kabisch H, et al: Osteosarcoma relapse after combined modality therapy: An analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 23:559–568. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Kruzelock RP, Murphy EC, Strong LC, Naylor SL and Hansen MF: Localization of a novel tumor suppressor locus on human chromosome 3q important in osteosarcoma tumorigenesis. Cancer Res. 57:106–159. 1997.PubMed/NCBI

8 

Morrow JJ and Khanna C: Osteosarcoma genetics and epigenetics: Emerging biology and candidate therapies. Crit Rev Oncog. 20:173–197. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Belchis DA, Meece CA, Benko FA, Rogan PK, Williams RA and Gocke CD: Loss of heterozygosity and microsatellite instability at the retinoblastoma locus in osteosarcomas. Diagn Mol Pathol. 5:214–219. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Benassi MS, Molendini L, Gamberi G, Ragazzini P, Sollazzo MR, Merli M, Asp J, Magagnoli G, Balladelli A, Bertoni F and Picci P: Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer. 84:489–493. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Durfee RA, Mohammed M and Luu HH: Review of osteosarcoma and current management. Rheumatol Ther. 3:221–243. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, Donahoe PK, Szallasi Z, Jensen TS and Brunak S: A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci USA. 105:20870–20875. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Zhang S and Cao J: A close examination of double filtering with fold change and t test in microarray analysis. BMC Bioinformatics. 10:4022009. View Article : Google Scholar : PubMed/NCBI

14 

Reiner A, Yekutieli D and Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 19:368–375. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Zhang B and Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4:172005. View Article : Google Scholar

16 

Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB and Klein TE: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 92:414–417. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, et al: OncoKB: A precision oncology knowledge base. JCO Precis Oncol. May 16–2017.(Epub ahead of print). doi: 10.1200/PO.17.00011. View Article : Google Scholar

18 

Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, et al: CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 49:170–174. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC, Srouji S, Livne E and Marie PJ: Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA. 106:18587–18591. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, et al: Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther. 9:535–544. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Guilloton F, Caron G, Ménard C, Pangault C, Amé-Thomas P, Dulong J, De Vos J, Rossille D, Henry C, Lamy T, et al: Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood. 119:2556–2567. 2012. View Article : Google Scholar : PubMed/NCBI

22 

André T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K, Bron D and Lagneaux L: Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One. 8:e597562013. View Article : Google Scholar : PubMed/NCBI

23 

Vella S, Tavanti E, Hattinger CM, Fanelli M, Versteeg R, Koster J, Picci P and Serra M: Targeting CDKs with roscovitine increases sensitivity to DNA damaging drugs of human osteosarcoma cells. PLoS One. 11:e01662332016. View Article : Google Scholar : PubMed/NCBI

24 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B and Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31:e152003. View Article : Google Scholar : PubMed/NCBI

26 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

28 

Carlson M, Falcon S, Pages H and Li N: hgu133plus2. db: Affymetrix human genome U133 Plus 2.0 Array annotation data (chip hgu133plus2). R package version 2. 2012.

29 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Yu G, Wang LG, Yan GR and He QY: DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 31:608–609. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Metsalu T and Vilo J: ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43:W566–W570. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI

33 

Chen B, Khodadoust MS, Liu CL, Newman AM and Alizadeh AA: Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 1711:243–259. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA: Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 12:453–457. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Pickup MW, Mouw JK and Weaver VM: The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–1253. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Schlegel J, Sambade MJ, Sather S, Moschos SJ, Tan AC, Winges A, DeRyckere D, Carson CC, Trembath DG, Tentler JJ, et al: MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J Clin Invest. 123:2257–2267. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Yu Y, Gaillard S, Phillip JM, Huang TC, Pinto SM, Tessarollo NG, Zhang Z, Pandey A, Wirtz D, Ayhan A, et al: Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell. 28:82–96. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Matsusaka S, Cao S, Hanna DL, Sunakawa Y, Ueno M, Mizunuma N, Zhang W, Yang D, Ning Y, Stintzing S, et al: CXCR4 polymorphism predicts progression-free survival in metastatic colorectal cancer patients treated with first-line bevacizumab-based chemotherapy. Pharmacogenomics J. 17:543–550. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, et al: Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 26:1789–1796. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Tamura K, Shimizu C, Hojo T, Akashi-Tanaka S, Kinoshita T, Yonemori K, Kouno T, Katsumata N, Ando M, Aogi K, et al: FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol. 22:1302–1307. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Pander J, van Huis-Tanja L, Böhringer S, van der Straaten T, Gelderblom H, Punt C and Guchelaar HJ: Genome wide association study for predictors of progression free survival in patients on capecitabine, oxaliplatin, bevacizumab and cetuximab in first-line therapy of metastatic colorectal cancer. PLoS One. 10:e01310912015. View Article : Google Scholar : PubMed/NCBI

42 

Hartmaier RJ, Richter AS, Gillihan RM, Sallit JZ, McGuire SE, Wang J, Lee AV, Osborne CK, O'Malley BW, Brown PH, et al: A SNP in steroid receptor coactivator-1 disrupts a GSK3β phosphorylation site and is associated with altered tamoxifen response in bone. Mol Endocrinol. 26:220–177. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Pascual T, Apellániz-Ruiz M, Pernaut C, Cueto-Felgueroso C, Villalba P, Álvarez C, Manso L, Inglada-Pérez L, Robledo M, Rodríguez-Antona C and Ciruelos E: Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS One. 12:e01801922017. View Article : Google Scholar : PubMed/NCBI

44 

Volz N, Stintzing S, Zhang W, Yang D, Ning Y, Wakatsuki T, El-Khoueiry RE, Li JE, Kardosh A, Loupakis F, et al: Genes involved in pericyte-driven tumor maturation predict treatment benefit of first-line FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. Pharmacogenomics J. 15:69–76. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Rokavec M, Schroth W, Amaral SM, Fritz P, Antoniadou L, Glavac D, Simon W, Schwab M, Eichelbaum M and Brauch H: A polymorphism in the TC21 promoter associates with an unfavorable tamoxifen treatment outcome in breast cancer. Cancer Res. 68:9799–9808. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Glynn SA, Boersma BJ, Howe TM, Edvardsen H, Geisler SB, Goodman JE, Ridnour LA, Lønning PE, Børresen-Dale AL, Naume B, et al: A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophosphamide. Clin Cancer Res. 15:4165–4173. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Bosó V, Herrero MJ, Santaballa A, Palomar L, Megias JE, de la Cueva H, Rojas L, Marqués MR, Poveda JL, Montalar J and Aliño SF: SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics. 15:1845–1858. 2014. View Article : Google Scholar : PubMed/NCBI

48 

DiLeo MV, Strahan GD, den Bakker M and Hoekenga OA: Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One. 6:e266832011. View Article : Google Scholar : PubMed/NCBI

49 

Zlotnik A, Burkhardt AM and Homey B: Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 11:597–606. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Holm NT, Byrnes K, Li BD, Turnage RH, Abreo F, Mathis JM and Chu QD: Elevated levels of chemokine receptor CXCR4 in HER-2 negative breast cancer specimens predict recurrence. J Surg Res. 141:53–59. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Jiang YP, Wu XH, Shi B, Wu WX and Yin GR: Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: An independent prognostic factor for tumor progression. Gynecol Oncol. 103:226–233. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Longo-Imedio MI, Longo N, Treviño I, Lázaro P and Sánchez-Mateos P: Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer. 117:861–865. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Zhao H, Guo L, Zhao H, Zhao J, Weng H and Zhao B: CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget. 6:5022–5040. 2015.PubMed/NCBI

54 

Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y and Fuse H: Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci. 99:539–542. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Xie L, Wei J, Qian X, Chen G, Yu L, Ding Y and Liu B: CXCR4, a potential predictive marker for docetaxel sensitivity in gastric cancer. Anticancer Res. 30:2209–2216. 2010.PubMed/NCBI

56 

Yang Z, Chen Y, Fu Y, Yang Y, Zhang Y, Chen Y and Li D: Meta-analysis of differentially expressed genes in osteosarcoma based on gene expression data. BMC Med Genet. 15:802014. View Article : Google Scholar : PubMed/NCBI

57 

Liu Y, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, Borel C, Frank M, Germain PL, Bludau I, et al: Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol. 37:314–322. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Venning FA, Wullkopf L and Erler JT: Targeting ECM disrupts cancer progression. Front Oncol. 5:2242015. View Article : Google Scholar : PubMed/NCBI

59 

Ivanov V, Ivanova S, Roomi M, Kalinovsky T, Niedzwiecki A and Rath M: Naturally produced extracellular matrix inhibits growth rate and invasiveness of human osteosarcoma cancer cells. Med Oncol. 24:209–217. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG and Keely PJ: Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:382006. View Article : Google Scholar : PubMed/NCBI

62 

Kim BG, An HJ, Kang S, Choi YP, Gao MQ, Park H and Cho NH: Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer. Am J Pathol. 178:373–381. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D and Allred DC: Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 72:4574–4586. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Miyata Y, Kanda S, Nomata K, Hayashida Y and Kanetake H: Expression of metalloproteinase-2, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in transitional cell carcinoma of upper urinary tract: Correlation with tumor stage and survival. Urology. 63:602–608. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Akira S, Uematsu S and Takeuchi O: Pathogen recognition and innate immunity. Cell. 124:783–801. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, Vloet RP, Dijkstra CD and van den Berg TK: The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 113:887–892. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Héninger E, Krueger TE and Lang JM: Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 6:292015.PubMed/NCBI

68 

Schwefel D, Arasu BS, Marino SF, Lamprecht B, Köchert K, Rosenbaum E, Eichhorst J, Wiesner B, Behlke J, Rocks O, et al: Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure. 21:550–559. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Fischer U, Michel A and Meese EU: Expression of the gene for hematopoietic cell specific protein is not restricted to cells of hematopoietic origin. Int J Mol Med. 15:611–615. 2005.PubMed/NCBI

70 

Morris P, Shaman J, Attaya M, Amaya M, Goodman S, Bergman C, Monaco JJ and Mellins E: An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature. 368:551–554. 1994. View Article : Google Scholar : PubMed/NCBI

71 

Fling SP, Arp B and Pious D: HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature. 368:554–548. 1994. View Article : Google Scholar : PubMed/NCBI

72 

Kinseth MA, Jia Z, Rahmatpanah F, Sawyers A, Sutton M, Wang-Rodriguez J, Mercola D and McGuire KL: Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. Int J Cancer. 134:81–91. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Wu Y, Tworkoski K, Michaud M and Madri JA: Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss. J Immunol. 182:2672–2679. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, Jaye M and Schlessinger J: Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain. Proc Natl Acad Sci USA. 87:7000–7004. 1990. View Article : Google Scholar : PubMed/NCBI

75 

Zuccotti P, Cartelli D, Stroppi M, Pandini V, Venturin M, Aliverti A, Battaglioli E, Cappelletti G and Riva P: Centaurin-α2 interacts with β-tubulin and stabilizes microtubules. PLoS One. 7:e528672012. View Article : Google Scholar : PubMed/NCBI

76 

Autieri MV, Carbone C and Mu A: Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury. Arterioscler Thromb Vasc Biol. 20:1737–1744. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Kelleher FC and O'Sullivan H: Monocytes, macrophages and osteoclasts in osteosarcoma. J Adolesc Young Adult Oncol. 6:396–405. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Han Q, Shi H and Liu F: CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int Immunopharmacol. 34:101–106. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Syn NL, Teng MWL, Mok TSK and Soo RA: De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Lussier DM, O'Neill L, Nieves LM, McAfee MS, Holechek SA, Collins AW, Dickman P, Jacobsen J, Hingorani P and Blattman JN: Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother. 38:96–106. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Yoshida A, Minowa MT, Takamatsu S, Hara T, Oguri S, Ikenaga H and Takeuchi M: Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: Alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. Glycobiology. 9:303–310. 1999. View Article : Google Scholar : PubMed/NCBI

83 

Buddingh EP, Kuijjer ML, Duim RA, Bürger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PC, Lankester AC and Cleton-Jansen AM: Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: A rationale for treatment with macrophage activating agents. Clin Cancer Res. 17:2110–2119. 2011. View Article : Google Scholar : PubMed/NCBI

84 

van Ravenswaay Claasen HH, Kluin PM and Fleuren GJ: Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab Invest. 67:166–174. 1992.PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sun, J., Xu, H., Qi, M., Zhang, C., & Shi, J. (2019). Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray. Molecular Medicine Reports, 20, 3075-3084. https://doi.org/10.3892/mmr.2019.10543
MLA
Sun, J., Xu, H., Qi, M., Zhang, C., Shi, J."Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray". Molecular Medicine Reports 20.4 (2019): 3075-3084.
Chicago
Sun, J., Xu, H., Qi, M., Zhang, C., Shi, J."Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray". Molecular Medicine Reports 20, no. 4 (2019): 3075-3084. https://doi.org/10.3892/mmr.2019.10543