Open Access

An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy

  • Authors:
    • Fei Xie
    • Dan Dong
    • Na Du
    • Liang Guo
    • Weihua Ni
    • Hongyan Yuan
    • Nannan Zhang
    • Jiang Jie
    • Guomu Liu
    • Guixiang Tai
  • View Affiliations

  • Published online on: July 29, 2019     https://doi.org/10.3892/mmr.2019.10535
  • Pages: 2990-3002
  • Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gene expression and DNA methylation levels affect the outcomes of patients with cancer. The present study aimed to establish a multigene risk model for predicting the outcomes of patients with cervical cancer (CerC) treated with or without radiotherapy. RNA sequencing training data with matched DNA methylation profiles were downloaded from The Cancer Genome Atlas database. Patients were divided into radiotherapy and non‑radiotherapy groups according to the treatment strategy. Differently expressed and methylated genes between the two groups were identified, and 8 prognostic genes were identified using Cox regression analysis. The optimized risk model based on the 8‑gene signature was defined using the Cox's proportional hazards model. Kaplan‑Meier survival analysis indicated that patients with higher risk scores exhibited poorer survival compared with patients with lower risk scores (log‑rank test, P=3.22x10‑7). Validation using the GSE44001 gene set demonstrated that patients in the high‑risk group exhibited a shorter survival time comprared with the low‑risk group (log‑rank test, P=3.01x10‑3). The area under the receiver operating characteristic curve values for the training and validation sets were 0.951 and 0.929, respectively. Cox regression analyses indicated that recurrence and risk status were risk factors for poor outcomes in patients with CerC treated with or without radiotherapy. The present study defined that the 8‑gene signature was an independent risk factor for the prognosis of patients with CerC. The 8‑gene prognostic model had predictive power for CerC prognosis.

References

1 

Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School, . Helen F, et al: Integrated genomic and molecular characterization of cervical cancer. Nature. 543:378–384. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Huang K, Sun H, Li X, Hu T, Yang R, Wang S, Jia Y, Chen Z, Tang F, Shen J, et al: Prognostic risk model development and prospective validation among patients with cervical cancer stage IB2 to IIB submitted to neoadjuvant chemotherapy. Sci Rep. 6:275682016. View Article : Google Scholar : PubMed/NCBI

3 

Jadon R, Pembroke CA, Hanna CL, Palaniappan N, Evans M, Cleves AE and Staffurth J: A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol). 26:185–196. 2014. View Article : Google Scholar : PubMed/NCBI

4 

White A, Joseph D, Rim SH, Johnson CJ, Coleman MP and Allemani C: Colon cancer survival in the United States by race and stage (2001–2009): Findings from the CONCORD-2 study. Cancer. 123 (Suppl 24):S5014–S5036. 2017. View Article : Google Scholar

5 

Obrzut B, Kusy M, Semczuk A, Obrzut M and Kluska J: Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer. 17:8402017. View Article : Google Scholar : PubMed/NCBI

6 

Dunn J, Baborie A, Alam F, Joyce K, Moxham M, Sibson R, Crooks D, Husband D, Shenoy A, Brodbelt A, et al: Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br J Cancer. 101:124–131. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Huang KH, Huang SF, Chen IH, Liao CT, Wang HM and Hsieh LL: Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clin Cancer Res. 15:4174–4180. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Miousse IR, Kutanzi KR and Koturbash I: Effects of ionizing radiation on DNA methylation: From experimental biology to clinical applications. Int J Radiat Biol. 93:457–469. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Widschwendter A, Müller HH, Fiegl H, Ivarsson L, Wiedemair A, Müller-Holzner E, Goebel G, Marth C and Widschwendter M: DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res. 10:565–571. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Okayama H, Schetter AJ, Ishigame T, Robles AI, Kohno T, Yokota J, Takenoshita S and Harris CC: The expression of four genes as a prognostic classifier for stage I lung adenocarcinoma in 12 independent cohorts. Cancer Epidemiol Biomarkers Prev. 23:2884–2894. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Cheng SH, Horng CF, Huang TT, Huang ES, Tsou MH, Shi LS, Yu BL, Chen CM and Huang AT: An eighteen-gene classifier predicts locoregional recurrence in post-mastectomy breast cancer patients. EBioMedicine. 5:74–81. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Harbour JW: A prognostic test to predict the risk of metastasis in uveal melanoma based on a 15-gene expression profile. Methods Mol Biol. 1102:427–440. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Field MG, Decatur CL, Kurtenbach S, Gezgin G, van der Velden PA, Jager MJ, Kozak KN and Harbour JW: PRAME as an independent biomarker for metastasis in Uveal melanoma. Clin Cancer Res. 22:1234–1242. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Lee YY, Kim TJ, Kim JY, Choi CH, Do IG, Song SY, Sohn I, Jung SH, Bae DS, Lee JW and Kim BG: Genetic profiling to predict recurrence of early cervical cancer. Gynecol Oncol. 131:650–654. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Wang P, Wang Y, Hang B, Zou X and Mao JH: A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget. 7:55343–55351. 2016.PubMed/NCBI

16 

Goeman JJ: L1 penalized estimation in the Cox proportional hazards model. Biom J. 52:70–84. 2010.PubMed/NCBI

17 

Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H and Wang Y: RNA-seq analyses of multiple meristems of soybean: Novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 14:1692014. View Article : Google Scholar : PubMed/NCBI

18 

Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 34:267–273. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Liu FF, Shi W, Done SJ, Miller N, Pintilie M, Voduc D, Nielsen TO, Nofech-Mozes S, Chang MC, Whelan TJ, et al: Identification of a Low-Risk luminal a breast cancer cohort that may not benefit from breast radiotherapy. J Clin Oncol. 33:2035–2040. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Zhang XM, Sheng SR, Wang XY, Bin LH, Wang JR and Li GY: Expression of tumor related gene NAG6 in gastric cancer and restriction fragment length polymorphism analysis. World J Gastroenterol. 10:1361–1364. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Gupta N, Martin PM, Miyauchi S, Ananth S, Herdman AV, Martindale RG, Podolsky R and Ganapathy V: Down-regulation of BCRP/ABCG2 in colorectal and cervical cancer. Biochem Biophys Res Commun. 343:571–577. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Osanai M and Lee GH: Increased expression of the retinoic acid-metabolizing enzyme CYP26A1 during the progression of cervical squamous neoplasia and head and neck cancer. BMC Res Notes. 7:6972014. View Article : Google Scholar : PubMed/NCBI

26 

Downie D, Mcfadyen MC, Rooney PH, Cruickshank ME, Parkin DE, Miller ID, Telfer C, Melvin WT and Murray GI: Profiling cytochrome P450 expression in ovarian cancer: Identification of prognostic markers. Clin Cancer Res. 11:7369–7375. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Wang D, Li T, Cui H and Zhang Y: Analysis of the indicating value of cardiac troponin I, tumor necrosis factor-α, interleukin-18, Mir-1 and Mir-146b for viral myocarditis among Children. Cell Physiol Biochem. 40:1325–1333. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Kern BE, Balcom JH, Antoniu BA, Warshaw AL and Fernández-del Castillo C: Troponin I peptide (Glu94-Leu123), a cartilage-derived angiogenesis inhibitor: In vitro and in vivo effects on human endothelial cells and on pancreatic cancer. J Gastrointest Surg. 7:961–969. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Casas-Tintó S, Maraver A, Serrano M and Ferrús A: Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget. 7:52631–52642. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Wei S, Shang H, Cao Y and Wang Q: The coiled-coil domain containing protein Ccdc136b antagonizes maternal Wnt/β-catenin activity during zebrafish dorsoventral axial patterning. J Genet Genomics. 43:431–438. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Kopczynski J, Kowalik A, Chłopek M, Wang ZF, Góźdź S, Lasota J and Miettinen M: Oncogenic activation of the Wnt/β-catenin signaling pathway in signet ring stromal cell tumor of the ovary. Appl Immunohistochem Mol Morphol. 24:e28–e33. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Nagaraj AB, Joseph P, Kovalenko O, Singh S, Armstrong A, Redline R, Resnick K, Zanotti K, Waggoner S and DiFeo A: Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget. 6:23720–23734. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Emons G, Spitzner M, Reineke S, Auslander N, Kramer F, Rave-Fraenk M, Gaedcke J, Ghadimi M, Ried T and Grade M: Abstract 4760: Wnt/β-catenin signaling mediates resistance of colorectal cancer cell lines to chemoradiotherapy. Cancer Res. 77:4760. 2017.

34 

Lan K, Zhao Y, Fan Y, Ma B, Yang S, Liu Q, Linghu H and Wang H: Sulfiredoxin may promote cervical cancer metastasis via Wnt/β-catenin signaling pathway. Int J Mol Sci. 18(pii): E9172017.PubMed/NCBI

35 

Sarkadi B, Ozvegy-Laczka C, Német K and Váradi A: ABCG2-a transporter for all seasons. FEBS Lett. 567:116–120. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Elkind NB, Szentpétery Z, Apáti A, Ozvegy-Laczka C, Várady G, Ujhelly O, Szabó K, Homolya L, Váradi A, Buday L, et al: Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res. 65:1770–1777. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Chau WK, Ip CK, Mak AS, Lai HC and Wong AS: c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene. 32:2767–2781. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Liu HG, Pan YF, You J, Wang OC, Huang KT and Zhang XH: Expression of ABCG2 and its significance in colorectal cancer. Asian Pac J Cancer Prev. 11:845–848. 2010.PubMed/NCBI

39 

Sari FM, Yanar HT and Ozhan G: Investigation of the functional single-nucleotide polymorphisms in the BCRP transporter and susceptibility to colorectal cancer. Biomed Rep. 3:105–109. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L, Munster P, Schell MJ, Dalton WS and Sullivan DM: ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood. 108:3881–3889. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Bram EE, Stark M, Raz S and Assaraf YG: Chemotherapeutic drug-induced ABCG2 promoter demethylation as a novel mechanism of acquired multidrug resistance 1 2. Neoplasia. 11:1359–1370. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Chang CL, Hong E, Lao-Sirieix P and Fitzgerald RC: A novel role for the retinoic acid-catabolizing enzyme CYP26A1 in Barrett's associated adenocarcinoma. Oncogene. 27:2951–2960. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Tang XH and Gudas LJ: Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 6:345–364. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Huang GL, Luo Q, Rui G, Zhang W, Zhang QY, Chen QX and Shen DY: Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol. 33:3416–3425. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Yasuhara R, Yuasa T, Williams JA, Byers SW, Shah S, Pacifici M, Iwamoto M and Enomoto-Iwamoto M: Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem. 285:317–327. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Francesca C, Stefano R, Gaia B, Ren M and Nicoletta S: Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network. PLoS One. 4:e43052009. View Article : Google Scholar : PubMed/NCBI

47 

Liu LY: Association of tissue promoter methylation levels of APC, RASSF1A, CYP26A1 and TBX15 with prostate cancer progression (unpublished PhD thesis)University of Toronto (Canada); 2012

48 

García-Mariscal A, Peyrollier K, Basse A, Pedersen E, Rühl R, van Hengel J and Brakebusch C: RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases. 9:433–444. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Yu YH, Chen HA, Chen PS, Cheng YJ, Hsu WH, Chang YW, Chen YH, Jan Y, Hsiao M, Chang TY, et al: MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene. 32:431–443. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Zheng CH, Quan Y, Li YY, Deng WG, Shao WJ and Fu Y: Expression of transcription factor FOXC2 in cervical cancer and effects of silencing on cervical cancer cell proliferation. Asian Pac J Cancer Prev. 15:1589–1595. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Zhou Z, Zhang L, Xie B, Wang X, Yang X, Ding N, Zhang J, Liu Q, Tan G, Feng D and Sun LQ: FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition. Cancer Lett. 363:137–145. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Martens S, Kozlov MM and Mcmahon HT: How synaptotagmin promotes membrane fusion. Science. 316:1205–1208. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF and Südhof TC: Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell. 79:717–727. 1994. View Article : Google Scholar : PubMed/NCBI

54 

Jahn JE and Coleman WB: Phenotypic normalization of GN6TF rat liver tumor cells results from WT1 expression following transfection of human SYT13-containing BACs. FASEB J. 20:A10912006.

55 

Kanda M, Shimizu D, Tanaka H, Tanaka C, Kobayashi D, Hayashi M, Iwata N, Niwa Y, Yamada S, Fujii T, et al: Significance of SYT8 For the detection, prediction, and treatment of peritoneal metastasis from gastric cancer. Ann Surg. 267:495–503. 2016. View Article : Google Scholar

56 

Sung HY, Han J, Ju W and Ahn JH: Synaptotagmin-like protein 2 gene promotes the metastatic potential in ovarian cancer. Oncol Rep. 36:535–541. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Jin H, Xu G, Zhang Q, Pang Q and Fang M: Synaptotagmin-7 is overexpressed in hepatocellular carcinoma and regulates hepatocellular carcinoma cell proliferation via Chk1-p53 signaling. Onco Targets Ther. 10:4283–4293. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Kanda M, Shimizu D, Tanaka H, Tanaka C, Kobayashi D, Hayashi M, Takami H, Niwa Y, Yamada S, Fujii T, et al: Synaptotagmin XIII expression and peritoneal metastasis in gastric cancer. Br J Surg. 105:1349–1358. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J, Li G, Lu X, Strieter RM, Burdick M, et al: Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 178:1340–1349. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Park JY, Park KH, Bang S, Kim MH, Lee JE, Gang J, Koh SS and Song SY: CXCL5 overexpression is associated with late stage gastric cancer. J Cancer Res Clin Oncol. 133:835–840. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Kawamura M, Toiyama Y, Tanaka K, Saigusa S, Okugawa Y, Hiro J, Uchida K, Mohri Y, Inoue Y and Kusunoki M: CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer. 48:2244–2251. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Begley L, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, Chinnaiyan AM and Macoska JA: CXCL5 promotes prostate cancer progression. Neoplasia. 10:244–254. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Wang C, Li A, Yang S, Qiao R, Zhu X and Zhang J: CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-κB pathway. Biochem Biophys Res Commun. 498:862–868. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Guan Z, Li C, Fan J, He D and Li L: Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT→NF-κB→CXCL5 signaling. Sci Rep. 6:370852016. View Article : Google Scholar : PubMed/NCBI

65 

Zhao J, Ou B, Han D, Wang P, Zong Y, Zhu C, Liu D, Zheng M, Sun J, Feng H and Lu A: Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer. 16:702017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xie, F., Dong, D., Du, N., Guo, L., Ni, W., Yuan, H. ... Tai, G. (2019). An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy. Molecular Medicine Reports, 20, 2990-3002. https://doi.org/10.3892/mmr.2019.10535
MLA
Xie, F., Dong, D., Du, N., Guo, L., Ni, W., Yuan, H., Zhang, N., Jie, J., Liu, G., Tai, G."An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy". Molecular Medicine Reports 20.4 (2019): 2990-3002.
Chicago
Xie, F., Dong, D., Du, N., Guo, L., Ni, W., Yuan, H., Zhang, N., Jie, J., Liu, G., Tai, G."An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy". Molecular Medicine Reports 20, no. 4 (2019): 2990-3002. https://doi.org/10.3892/mmr.2019.10535