Open Access

Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review)

  • Authors:
    • Fuli Shi
    • Jiayu Gao
    • Junrong Zou
    • Ying Ying
    • Hui Lin
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/mmr.2019.10556
  • Pages: 2979-2989
  • Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Heterotopic ossification (HO) refers to the appearance of osteoblasts in soft tissues under pathological conditions, such as trauma or infection. HO arises in an unpredictable way without any recognizable initiation. Activin receptor‑like kinase‑2 (ALK2) is a type I cell surface receptor for bone morphogenetic proteins (BMPs). The dysregulation of ALK2 signaling is associated with a variety of diseases, including cancer and HO. At present, the prevention and treatment of HO in the clinic predominantly includes nonsteroidal anti‑inflammatory drugs (NSAIDs), bisphosphonates and other drug treatments, low‑dose local radiation therapy and surgical resection, rehabilitation treatment and physical therapy. However, most of these therapies have adverse effects. These methods do not prevent the occurrence of HO. The pathogenesis of HO is not being specifically targeted; the current treatment strategies target the symptoms, not the disease. These treatments also cannot solve the fundamental problem of the occurrence of HO. Therefore, scholars have been working to develop targeted therapies based on the pathogenesis of HO. The present review focuses on advances in the understanding of the underlying mechanisms of HO, and possible options for the prevention and treatment of HO. In addition, the role of ALK2 in the process of HO is introduced and the progress made towards the targeted inhibition of ALK2 is discussed. The present study aims to offer a platform for further research on possible targets for the prevention and treatment of HO.

References

1 

Edwards DS, Kuhn KM, Potter BK and Forsberg JA: Heterotopic ossification: A review of current understanding, treatment, and future. J Orthop Trauma. 30 (Suppl 3):S27–S30. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Hildebrand L, Rossbach B, Kühnen P, Gossen M, Kurtz A, Reinke P, Seemann P and Stachelscheid H: Generation of integration free induced pluripotent stem cells from fibrodysplasia ossificans progressiva (FOP) patients from urine samples. Stem Cell Res. 16:54–58. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Shore EM, Ahn J, Jan de Beur S, Li M, Xu M, Gardner RJ, Zasloff MA, Whyte MP, Levine MA and Kaplan FS: Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med. 346:99–106. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Maruyama R and Yokota T: Morpholino-mediated exon skipping targeting human ACVR1/ALK2 for fibrodysplasia ossificans progressiva. Methods Mol Biol. 1828:497–502. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Lees-Shepard JB, Yamamoto M, Biswas AA, Stoessel SJ, Nicholas SE, Cogswell CA, Devarakonda PM, Schneider MJ Jr, Cummins SM, Legendre NP, et al: Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat Commun. 9:4712018. View Article : Google Scholar : PubMed/NCBI

6 

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI

7 

Abula K, Muneta T, Miyatake K, Yamada J, Matsukura Y, Inoue M, Sekiya I, Graf D, Economides AN, Rosen V and Tsuji K: Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett. 589:1240–1248. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Pereda A, Martos-Tello JM, Garin I, Errea-Dorronsoro J and Perez de Nanclares G: Progressive osseous heteroplasia caused by a mosaic GNAS mutation. Clin Endocrinol (Oxf). 88:993–955. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Culbert AL, Chakkalakal SA, Theosmy EG, Brennan TA, Kaplan FS and Shore EM: Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells. 32:1289–300. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Feldman G, Li M, Martin S, Urbanek M, Urtizberea JA, Fardeau M, LeMerrer M, Connor JM, Triffitt J, Smith R, et al: Fibrodysplasia ossificans progressiva, a heritable disorder of severe heterotopic ossification, maps to human chromosome 4q27-31. Am J Hum Genet. 66:128–135. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Regard JB, Malhotra D, Gvozdenovic-Jeremic J, Josey M, Chen M, Weinstein LS, Lu J, Shore EM, Kaplan FS and Yang Y: Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med. 19:1505–1512. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Forsberg JA, Pepek JM, Wagner S, Wilson K, Flint J, Andersen RC, Tadaki D, Gage FA, Stojadinovic A and Elster EA: Heterotopic ossification in high-energy wartime extremity injuries: Prevalence and risk factors. J Bone Joint Surg Am. 91:1084–1091. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Kaplan FS, Le Merrer M, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, Groppe J and Shore EM: Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheumatol. 22:191–205. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Kaplan FS, Xu M, Glaser DL, Collins F, Connor M, Kitterman J, Sillence D, Zackai E, Ravitsky V, Zasloff M, et al: Early diagnosis of fibrodysplasia ossificans progressiva. Pediatrics. 121:e1295–e1300. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Potter BK, Forsberg JA, Davis TA, Evans KN, Hawksworth JS, Tadaki D, Brown TS, Crane NJ, Burns TC, O'Brien FP and Elster EA: Heterotopic ossification following combat-related trauma. J Bone Joint Surg Am. 92 (Suppl 2):S74–S89. 2010. View Article : Google Scholar

16 

Kan L and Kessler JA: Animal models of typical heterotopic ossification. J Biomed Biotechnol. 2011:3092872011. View Article : Google Scholar : PubMed/NCBI

17 

Alfieri KA, Forsberg JA and Potter BK: Blast injuries and heterotopic ossification. Bone Joint Res. 1:192–197. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Shehab D, Elgazzar AH and Collier BD: Heterotopic ossification. J Nucl Med. 43:346–353. 2002.PubMed/NCBI

19 

Pavey GJ, Polfer EM, Nappo KE, Tintle SM, Forsberg JA and Potter BK: What risk factors predict recurrence of heterotopic ossification after excision in combat-related amputations? Clin Orthop Relat Res. 473:2814–2824. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Gugala Z, Olmsted-Davis EA, Xiong Y, Davis EL and Davis AR: Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol. 9:4082018. View Article : Google Scholar : PubMed/NCBI

21 

Juarez JK, Wenke JC and Rivera JC: Treatments and preventative measures for trauma-induced heterotopic ossification: A review. Clin Transl Sci. 11:365–370. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Carroll SF, Buckley CT and Kelly DJ: Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front Bioeng Biotechnol. 5:732017. View Article : Google Scholar : PubMed/NCBI

23 

Upadhyay J, Xie L, Huang L, Das N, Stewart RC, Lyon MC, Palmer K, Rajamani S, Graul C, Lobo M, et al: The expansion of heterotopic bone in fibrodysplasia ossificans progressiva is activin A-dependent. J Bone Miner Res. 32:2489–2499. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Xu R, Hu J, Zhou X and Yang Y: Heterotopic ossification: Mechanistic insights and clinical challenges. Bone. 109:134–142. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Lounev VY, Ramachandran R, Wosczyna MN, Yamamoto M, Maidment AD, Shore EM, Glaser DL, Goldhamer DJ and Kaplan FS: Identification of progenitor cells that contribute to heterotopic skeletogenesis. J Bone Joint Surg Am. 91:652–663. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Glaser DL, Economides AN, Wang L, Liu X, Kimble RD, Fandl JP, Wilson JM, Stahl N, Kaplan FS and Shore EM: In vivo somatic cell gene transfer of an engineered Noggin mutein prevents BMP4-induced heterotopic ossification. J Bone Joint Surg Am. 85:2332–2342. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Kan L and Kessler JA: Evaluation of the cellular origins of heterotopic ossification. Orthopedics. 37:329–340. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Ji Y, Christopherson GT, Kluk MW, Amrani O, Jackson WM and Nesti LJ: Heterotopic ossification following musculoskeletal trauma: Modeling stem and progenitor cells in their microenvironment. Adv Exp Med Biol. 720:39–50. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R and Olsen BR: Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 16:1400–1406. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, Moran KM, Fouletier-Dilling CM, Schumara-Martin S, Lindsey RW, et al: Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol. 170:620–632. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Olmsted-Davis EA, Salisbury EA, Hoang D, Davis EL, Lazard Z, Sonnet C, Davis TA, Forsberg JA and Davis AR: Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med. 6:1109–1119. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Gurkan UA, Golden R, Kishore V, Riley CP, Adamec J and Akkus O: Immune and inflammatory pathways are involved in inherent bone marrow ossification. Clin Orthop Relat Res. 470:2528–2540. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Montag AG, Haydon RC and He TC: Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 25:665–677. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Chen D, Zhao M and Mundy GR: Bone morphogenetic proteins. Growth Factors. 22:233–241. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Rahman MS, Akhtar N, Jamil HM, Banik RS and Asaduzzaman SM: TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 15005015.

36 

Sánchez-Duffhues G, Hiepen C, Knaus P and Ten Dijke P: Bone morphogenetic protein signaling in bone homeostasis. Bone. 80:43–59. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Shore EM and Kaplan FS: Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva. Curr Osteoporos Rep. 9:83–88. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Bouvard B, Masson C, Legrand E and Audran M: Fibrodysplasia ossificans progressiva. A case report and focus on the BMP signaling pathway. Morphologie. 100:250–255. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Kan C, Chen L, Hu Y, Ding N, Lu H, Li Y, Kessler JA and Kan L: Conserved signaling pathways underlying heterotopic ossification. Bone. 109:43–48. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P and Bullock AN: Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem. 287:36990–36998. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Dudas M, Sridurongrit S, Nagy A, Okazaki K and Kaartinen V: Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells. Mech Dev. 121:173–182. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Lin H, Ying Y, Wang YY, Wang G, Jiang SS, Huang D, Luo L, Chen YG, Gerstenfeld LC and Luo Z: AMPK downregulates ALK2 via increasing the interaction between Smurf1 and Smad6, leading to inhibition of osteogenic differentiation. Biochim Biophys Acta Mol Cell Res. 1864:2369–2377. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Engers DW, Frist AY, Lindsley CW, Hong CC and Hopkins CR: Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: The discovery of ML347 as an ALK2 versus ALK3 selective MLPCN probe. Bioorg Med Chem Lett. 23:3248–3252. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Machiya A, Tsukamoto S, Ohte S, Kuratani M, Fujimoto M, Kumagai K, Osawa K, Suda N, Bullock AN and Katagiri T: Effects of FKBP12 and type II BMP receptors on signal transduction by ALK2 activating mutations associated with genetic disorders. Bone. 111:101–108. 2018. View Article : Google Scholar : PubMed/NCBI

45 

van Dinther M, Visser N, de Gorter DJ, Doorn J, Goumans MJ, de Boer J and ten Dijke P: ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. J Bone Miner Res. 25:1208–1215. 2010.PubMed/NCBI

46 

Chakkalakal SA, Zhang D, Culbert AL, Convente MR, Caron RJ, Wright AC, Maidment AD, Kaplan FS and Shore EM: An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res. 27:1746–1756. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Hatsell SJ, Idone V, Wolken DM, Huang L, Kim HJ, Wang L, Wen X, Nannuru KC, Jimenez J, Xie L, et al: ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 7:303ra1372015. View Article : Google Scholar : PubMed/NCBI

48 

Katagiri T: A door opens for fibrodysplasia ossificans progressiva. Trends Biochem Sci. 41:119–121. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, et al: BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 14:1363–1369. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Hino K, Ikeya M, Horigome K, Matsumoto Y, Ebise H, Nishio M, Sekiguchi K, Shibata M, Nagata S, Matsuda S and Toguchida J: Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci USA. 112:15438–15443. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Olsen OE, Wader KF, Hella H, Mylin AK, Turesson I, Nesthus I, Waage A, Sundan A and Holien T: Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun Signal. 13:272015. View Article : Google Scholar : PubMed/NCBI

52 

Wang H, Lindborg C, Lounev V, Kim JH, McCarrick-Walmsley R, Xu M, Mangiavini L, Groppe JC, Shore EM, Schipani E, et al: Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J Bone Miner Res. 31:1652–1665. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Kent WT, Shelton TJ and Eastman J: Heterotopic ossification around the knee after tibial nailing and ipsilateral antegrade and retrograde femoral nailing in the treatment of floating knee injuries. Int Orthop. 42:1379–1385. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Wang YK, Sun WF, Liu XG, Deng J, Yan BE, Jiang WY and Lin XB: Comparative study of serum levels of BMP-2 and heterotopic ossification in traumatic brain injury and fractures patients. Zhongguo Gu Shang. 24:399–403. 2011.(In Chinese). PubMed/NCBI

55 

Peterson JR, De La Rosa S, Eboda O, Cilwa KE, Agarwal S, Buchman SR, Cederna PS, Xi C, Morris MD, Herndon DN, et al: Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med. 6:255ra1322014. View Article : Google Scholar : PubMed/NCBI

56 

Kang H, Dang AB, Joshi SK, Halloran B, Nissenson R, Zhang X, Li J, Kim HT and Liu X: Novel mouse model of spinal cord injury-induced heterotopic ossification. J Rehabil Res Dev. 51:1109–1118. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Lengner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Primary mouse embryonic fibroblasts: A model of mesenchymal cartilage formation. J Cell Physiol. 200:327–333. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Sun E and Hanyu-Deutmeyer AA: Heterotopic Ossification. StatPearlsTreasure Island (FL): StatPearls Publishing StatPearls Publishing LLC; 2018

59 

Beckmann JT, Wylie JD, Potter MQ, Maak TG, Greene TH and Aoki SK: Effect of naproxen prophylaxis on heterotopic ossification following hip arthroscopy: A double-blind randomized placebo-controlled trial. J Bone Joint Surg Am. 97:2032–2037. View Article : Google Scholar : PubMed/NCBI

60 

Rivera JC, Hsu JR, Noel SP, Wenke JC and Rathbone CR: Locally delivered nonsteroidal antiinflammatory drug: A potential option for heterotopic ossification prevention. Clin Transl Sci. 8:591–593. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Rath E, Warschawski Y, Maman E, Dolkart O, Sharfman ZT, Salai M and Amar E: Selective COX-2 inhibitors significantly reduce the occurrence of heterotopic ossification after Hip arthroscopic surgery. Am J Sports Med. 44:677–681. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Beckmann JT, Wylie JD, Kapron AL, Hanson JA, Maak TG and Aoki SK: The effect of NSAID prophylaxis and operative variables on heterotopic ossification after Hip arthroscopy. Am J Sports Med. 42:1359–1364. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Haran M, Bhuta T and Lee B: Pharmacological interventions for treating acute heterotopic ossification. Cochrane Database Syst Rev. CD0033212004.PubMed/NCBI

64 

Salazar D, Golz A, Israel H and Marra G: Heterotopic ossification of the elbow treated with surgical resection: Risk factors, bony ankylosis, and complications. Clin Orthop Relat Res. 472:2269–2275. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Sheybani A, TenNapel MJ, Lack WD, Clerkin P, Hyer DE, Sun W and Jacobson GM: Risk of radiation-induced malignancy with heterotopic ossification prophylaxis: A case-control analysis. Int J Radiat Oncol Biol Phys. 89:584–589. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Kaplan FS, Pignolo RJ, Al Mukaddam MM and Shore EM: Hard targets for a second skeleton: Therapeutic horizons for fibrodysplasia ossificans progressiva (FOP). Expert Opin Orphan Drugs. 5:291–294. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Cappato S, Tonachini L, Giacopelli F, Tirone M, Galietta LJ, Sormani M, Giovenzana A, Spinelli AE, Canciani B, Brunelli S, et al: High-throughput screening for modulators of ACVR1 transcription: Discovery of potential therapeutics for fibrodysplasia ossificans progressiva. Dis Model Mech. 9:685–696. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Glister C, Regan SL, Samir M and Knight P: Gremlin, Noggin, Chordin and follistatin differentially modulate BMP induced suppression of androgen secretion by bovine ovarian theca cells. J Mol Endocrinol. Oct 1–2018.(Epub ahead of print). PubMed/NCBI

69 

Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD and Peterson RT: Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol. 4:33–41. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, Deng DY, Sachidanandan C, Bloch KD and Peterson RT: Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett. 18:4388–4392. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD and Yu PB: Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol. 8:1291–1302. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR, Hopkins CR, Lindsley CW and Hong CC: In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol. 5:245–253. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Tsugawa D, Oya Y, Masuzaki R, Ray K, Engers DW, Dib M, Do N, Kuramitsu K, Ho K, Frist A, et al: Specific activin receptor-like kinase 3 inhibitors enhance liver regeneration. J Pharmacol Exp Ther. 351:549–558. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Mohedas AH, Wang Y, Sanvitale CE, Canning P, Choi S, Xing X, Bullock AN, Cuny GD and Yu PB: Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants. J Med Chem. 57:7900–7915. View Article : Google Scholar : PubMed/NCBI

75 

Williams E and Bullock AN: Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2. Bone. 109:251–258. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Dey D, Bagarova J, Hatsell SJ, Armstrong KA, Huang L, Ermann J, Vonner AJ, Shen Y, Mohedas AH, Lee A, et al: Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci Transl Med. 8:366ra1632016. View Article : Google Scholar : PubMed/NCBI

77 

Giacopelli F, Cappato S, Tonachini L, Mura M, Di Lascio S, Fornasari D, Ravazzolo R and Bocciardi R: Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva. Orphanet J Rare Dis. 8:1452013. View Article : Google Scholar : PubMed/NCBI

78 

Li L, Liu Y, Guo Y, Liu B, Zhao Y, Li P, Song F, Zheng H, Yu J, Song T, et al: Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology. 61:574–584. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Zumbrennen-Bullough KB, Wu Q, Core AB, Canali S, Chen W, Theurl I, Meynard D and Babitt JL: MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription. J Biol Chem. 289:23796–23808. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Song H, Wang Q, Wen J, Liu S, Gao X, Cheng J and Zhang D: ACVR1, a therapeutic target of fibrodysplasia ossificans progressiva, is negatively regulated by miR-148a. Int J Mol Sci. 13:2063–2077. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Mura M, Cappato S, Giacopelli F, Ravazzolo R and Bocciardi R: The role of the 3′UTR region in the regulation of the ACVR1/Alk-2 gene expression. PLoS One. 7:e509582012. View Article : Google Scholar : PubMed/NCBI

82 

Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG and Scheideler M: MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 8:850–860. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Shi S, Cai J, de Gorter DJ, Sanchez-Duffhues G, Kemaladewi DU, Hoogaars WM, Aartsma-Rus A, 't Hoen PA and ten Dijke P: Antisense-oligonucleotide mediated exon skipping in activin-receptor-like kinase 2: Inhibiting the receptor that is overactive in fibrodysplasia ossificans progressiva. PLoS One. 8:e690962013. View Article : Google Scholar : PubMed/NCBI

84 

Takahashi M, Katagiri T, Furuya H and Hohjoh H: Disease-causing allele-specific silencing against the ALK2 mutants, R206H and G356D, in fibrodysplasia ossificans progressiva. Gene Ther. 19:781–785. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Kaplan J, Kaplan FS and Shore EM: Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting. Gene Ther. 19:786–790. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ and den Dunnen JT: Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 30:293–299. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Miki Y, Morioka T, Shioi A, Fujimoto K, Sakura T, Uedono H, Kakutani Y, Ochi A, Mori K, Shoji T, et al: Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem Biophys Res Commun. 516:951–956. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Yamamoto R, Matsushita M, Kitoh H, Masuda A, Ito M, Katagiri T, Kawai T, Ishiguro N and Ohno K: Clinically applicable antianginal agents suppress osteoblastic transformation of myogenic cells and heterotopic ossifications in mice. J Bone Miner Metab. 31:26–33. 2013.PubMed/NCBI

89 

Kitoh H, Achiwa M, Kaneko H, Mishima K, Matsushita M, Kadono I, Horowitz JD, Sallustio BC, Ohno K and Ishiguro N: Perhexiline maleate in the treatment of fibrodysplasia ossificans progressiva: An open-labeled clinical trial. Orphanet J Rare Dis. 8:1632013. View Article : Google Scholar : PubMed/NCBI

90 

Kaplan FS, Pignolo RJ and Shore EM: From mysteries to medicines: Drug development for fibrodysplasia ossificans progressive. Expert Opin Orphan Drugs. 1:637–649. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Cappato S, Giacopelli F, Ravazzolo R and Bocciardi R: The horizon of a therapy for rare genetic diseases: A ‘Druggable’ future for fibrodysplasia ossificans progressiva. Int J Mol Sci. 19(pii): E9892018. View Article : Google Scholar : PubMed/NCBI

92 

Pang J, Zuo Y, Chen Y, Song L, Zhu Q, Yu J, Shan C, Cai Z, Hao J, Kaplan FS, et al: ACVR1-Fc suppresses BMP signaling and chondro-osseous differentiation in an in vitro model of Fibrodysplasia ossificans progressiva. Bone. 92:29–36. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shi, F., Gao, J., Zou, J., Ying, Y., & Lin, H. (2019). Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review). Molecular Medicine Reports, 20, 2979-2989. https://doi.org/10.3892/mmr.2019.10556
MLA
Shi, F., Gao, J., Zou, J., Ying, Y., Lin, H."Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review)". Molecular Medicine Reports 20.4 (2019): 2979-2989.
Chicago
Shi, F., Gao, J., Zou, J., Ying, Y., Lin, H."Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review)". Molecular Medicine Reports 20, no. 4 (2019): 2979-2989. https://doi.org/10.3892/mmr.2019.10556