All‑trans‑retinoic acid modulates TGF‑β‑induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling

  • Authors:
    • Lingling Liang
    • Xiaomei Wang
    • Yajuan Zheng
    • Yang Liu
  • View Affiliations

  • Published online on: July 18, 2019     https://doi.org/10.3892/mmr.2019.10507
  • Pages: 2929-2935
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Conjunctival fiber generation is implicated in a wide spectrum of ocular diseases. Conjunctival wound healing is characterized by inflammation followed by re‑epithelialization, synthesis of new extracellular matrix (ECM), wound contraction and subconjunctival scar formation. The primary cause for the failure of glaucoma filtration surgery results from the excessive scarring of the filtering bleb. All‑trans‑retinoic acid (ATRA), a derivative of vitamin A, is a potent regulator of ECM synthesis, growth and differentiation. Following a previous study, which revealed that ATRA could inhibit transforming growth factor‑β‑induced human conjunctival fibroblast (HConF)‑mediated collagen gel contraction, the present study aimed to investigate the effects of ATRA on HConF migration, apoptosis, proliferation and ECM synthesis. To achieve this, the present study used Transwell migration, wound healing and Cell Counting Kit‑8 assays, flow cytometry and western blot analysis. In addition, the present study aimed to elucidate the mechanism of ATRA in mediating resistance to conjunctival scar formation. ATRA treatment resulted in an increased level of HConF apoptosis, reduced proliferation and migration, decreased collagen I and fibronectin expression, and decreased phosphorylation of PI3K and AKT. Thus, the present study showed a role for ATRA in inhibiting HConF migration, proliferation and ECM synthesis, and in promoting HConF apoptosis through the inhibition of the PI3K/AKT signaling pathway.

References

1 

Thylefors B and Négrel AD: The global impact of glaucoma. Bull World Health Org. 72:323–326. 1994.PubMed/NCBI

2 

Foster A and Johnson GJ: Magnitude and causes of blindness in the developing world. Int Ophthalmol. 14:135–140. 1990. View Article : Google Scholar : PubMed/NCBI

3 

Quigley HA: Number of people with glaucoma worldwide. Br J Ophthalmol. 80:389–393. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Sommer A: Doyne lecture. Glaucoma: Facts and figures. Eye (Lond). 10:295–301. 1996. View Article : Google Scholar : PubMed/NCBI

5 

Jay JL: Rational choice of therapy in primary open angle glaucoma. Eye (Lond). 6:243–247. 1992. View Article : Google Scholar : PubMed/NCBI

6 

Migdal C, Gregory W and Hitchings R: Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology. 101:1651–1657. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Chang L, Crowston JG, Cordeiro MF, Akbar AN and Khaw PT: The role of the immune system in conjunctival wound healing after glaucoma surgery. Surv Ophthalmol. 45:49–68. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Atreides SP, Skuta GL and Reynolds AC: Wound healing modulation in glaucoma filtering surgery. Int Ophthalmol Clin. 44:61–106. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Desjardins DC, Parrish RK II, Folberg R, Nevarez J, Heuer DK and Gressel MG: Wound healing after filtering surgery in owl monkeys. Arch Ophthalmol. 104:1835–1839. 1986. View Article : Google Scholar : PubMed/NCBI

10 

Saika S, Yamanaka O, Okada Y, Tanaka S, Miyamoto T, Sumioka T, Kitano A, Shirai K and Ikeda K: TGF beta in fibroproliferative diseases in the eye. Front Biosci (Schol Ed). 1:376–390. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Cong M, Iwaisako K, Jiang C and Kisseleva T: Cell Signals Influencing Hepatic Fibrosis. Int J Hepatol. 2012:1585472012. View Article : Google Scholar : PubMed/NCBI

12 

Sang H, Li T, Li H and Liu J: Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma. Tumour Biol. 36:8367–8377. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Zhou H, Li D, Shi C, Xin T, Yang J, Zhou Y, Hu S, Tian F, Wang J and Chen Y: Effects of exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep. 5:128982015. View Article : Google Scholar : PubMed/NCBI

14 

Zeng R, Xiong Y, Zhu F, Ma Z, Liao W, He Y, He J, Li W, Yang J, Lu Q, et al: Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One. 8:e768362013. View Article : Google Scholar : PubMed/NCBI

15 

Wen X, Li Y, Hu K, Dai C and Liu Y: Hepatocyte growth factor receptor signaling mediates the anti-fibrotic action of 9-cisretinoic acid in glomerular mesangial cells. Am J Pathol. 167:947–957. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Liu Y, Kimura K, Orita T, Teranishi S, Suzuki K and Sonoda KH: Inhibition by all-trans-retinoic acid of transforming growth factor-β-induced collagen gel contraction mediated by human tenon fibroblasts. Invest Ophthalmol Vis Sci. 55:4199–4205. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Sun L, Dong Y, Zhao J, Yin Y, Tong B, Zheng Y and Xin H: NPPB modulates apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling. Int J Mol Med. 41:1331–1338. 2018.PubMed/NCBI

18 

Marshall J: Transwell(®) invasion assays. Methods Mol Biol. 769:97–110. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Liu Y, Ko JA, Yanai R, Kimura K, Chikama T, Sagara T and Nishida T: Induction by latanoprost of collagen gel contraction mediated by human tenon fibroblasts: Role of intracellular signaling molecules. Invest Ophthalmol Vis Sci. 49:1429–1436. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Liu Y, Yanai R, Lu Y, Kimura K and Nishida T: Promotion by fibronectin of collagen gel contraction mediated by human corneal fibroblasts. Exp Eye Res. 83:1196–1204. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Cordeiro MF: Role of transforming growth factor beta in conjunctival scarring. Clin Sci (Lond). 104:181–187. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Ye Y and Dan Z: All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal. J Huazhong Univ Sci Technolog Med Sci. 30:726–733. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Dong Z, Tai W, Yang Y, Zhang T, Li Y, Chai Y, Zhong H, Zou H and Wang D: The role of all-trans retinoic acid in bleomycin-induced pulmonary fibrosis in mice. Exp Lung Res. 38:82–89. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Morath C, Dechow C, Lehrke I, Haxsen V, Waldherr R, Floege J, Ritz E and Wagner J: Effects of retinoids on the TGF-beta system and extracellular matrix in experimental glomerulonephritis. J Am Soc Nephrol. 12:2300–2309. 2001.PubMed/NCBI

25 

Zhou TB, Drummen GP and Qin YH: The controversial role of retinoic acid in fibrotic diseases: Analysis of involved signaling pathways. Int J Mol Sci. 14:226–243. 2013. View Article : Google Scholar

26 

Chen J: The IL-23/IL-17 axis may be important in obesity-asso-ciated cancer by way of the activation of multiple signal pathways. Int J Obes (Lond). 34:1227–1229. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J and Gu Y: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 19:783–791. 2019.PubMed/NCBI

28 

Liu Y, Li W, Liu H, Peng Y, Yang Q, Xiao L, Liu Y and Liu F: Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of extracellular matrix molecules in cultured human renal proximal tubular cells. Ren Fail. 36:278–284. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Qin D, Zhang GM, Xu X and Wang LY: The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells. J Diabetes Res. 2015:9202802015. View Article : Google Scholar : PubMed/NCBI

30 

Chung EJ, Sohn YH, Kwon SH, Jung SA and Lee JH: Lithium chloride inhibits TGF-β1-induced myofibroblast transdifferentiation via PI3K/Akt pathway in cultured fibroblasts from Tenon's capsule of the human eye. Biotechnol Lett. 36:1217–1224. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Guo X, Yang Y, Liu L, Liu X, Xu J, Wu K and Yu M: Pirfenidone induces G1 arrest in human Tenon's fibroblasts in vitro involving AKT and MAPK signaling pathways. J Ocul Pharmacol Ther. 33:366–374. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Carducci A, Scafetta G, Siciliano C, Carnevale R, Rosa P, Coccia A, Mangino G, Bordin A, Vingolo EM, Pierelli L, et al: GMP-grade platelet lysate enhances proliferation and migration of tenon fibroblasts. Front Biosci (Elite Ed). 8:84–99. 2016.PubMed/NCBI

33 

Li N, Cui J, Duan X, Chen H and Fan F: Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Invest Ophthalmol Vis Sci. 53:1670–1678. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Wen J, Lin X, Gao W, Qu B, Ling Y, Liu R and Yu M: MEK inhibition prevents TGF-β1-induced myofibroblast trans differentiation in human tenon fibroblasts. Mol Med Rep. 19:468–476. 2019.PubMed/NCBI

36 

Addicks EM, Quigley HA, Green WR and Robin AL: Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol. 101:795–798. 1983. View Article : Google Scholar : PubMed/NCBI

37 

Hitchings RA and Grierson I: Clinico pathological correlation in eyes with failed fistulizing surgery. Trans Ophthalmol Soc U K. 103:84–88. 1983.PubMed/NCBI

38 

Mielke C, Dawda VK and Anand N: Intraoperative 5-fluorouracil application during primary trabeculectomy in Nigeria: A comparative study. Eye (Lond). 17:829–834. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Wong TT, Khaw PT, Aung T, Foster PJ, Htoon HM, Oen FT, Gazzard G, Husain R, Devereux JG, Minassian D, et al: The singapore 5-fluorouracil trabeculectomy study: Effects on intraocular pressure control and disease progression at 3 years. Ophthalmology. 116:175–184. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Shin DH, Ren J, Juzych MS, Hughes BA, Kim C, Song MS, Yang KJ and Glover KB: Primary glaucoma triple procedure in patients with primary open-angle glaucoma: The effect of mitomycin-C in patients with and without prognostic factors for filtration failure. Am J Ophthalmol. 125:346–352. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Perkins TW, Gangnon R, Ladd W, Kaufman PL and Heatley GA: Trabeculectomy with mitomycin C: Intermediate-term results. J Glaucoma. 7:230–236. 1998. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liang, L., Wang, X., Zheng, Y., & Liu, Y. (2019). All‑trans‑retinoic acid modulates TGF‑β‑induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling. Molecular Medicine Reports, 20, 2929-2935. https://doi.org/10.3892/mmr.2019.10507
MLA
Liang, L., Wang, X., Zheng, Y., Liu, Y."All‑trans‑retinoic acid modulates TGF‑β‑induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling". Molecular Medicine Reports 20.3 (2019): 2929-2935.
Chicago
Liang, L., Wang, X., Zheng, Y., Liu, Y."All‑trans‑retinoic acid modulates TGF‑β‑induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling". Molecular Medicine Reports 20, no. 3 (2019): 2929-2935. https://doi.org/10.3892/mmr.2019.10507