Extraction and identification of platelet‑derived microparticles

  • Authors:
    • Jun Guo
    • Can Feng
    • Bili Zhang
    • Shiyang Zhang
    • Xiaxian Shen
    • Jiaqi Zhu
    • Xian‑Xian Zhao
  • View Affiliations

  • Published online on: July 9, 2019     https://doi.org/10.3892/mmr.2019.10484
  • Pages: 2916-2921
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Microparticles are carriers of signals for intracellular signal transduction. These carriers include proteins, mRNAs, microRNAs and other bioactive substances. Platelets are a major source of circulating microparticles, and microparticles are closely associated with the development of certain cardiovascular diseases. In the present study, a method for separating, extracting and identifying platelet‑derived microparticles was developed and differences in the expression of surface proteins on microparticles harvested from platelets stimulated by vortexing or treatment with thrombin was investigated. The counts, composition, sizes and inner structures of microparticles were determined using flow cytometry and transmission electron microscopy. Additionally, it was demonstrated that platelets could be readily activated, and a large quantity of microparticles with varying complex compositions, structures and sizes were derived from activated platelets. High purity platelet‑derived microparticles were obtained by gradient centrifugation. However, the microparticles derived from platelets stimulated by thrombin treatment or vortexing differed significantly in the levels of CD63. The present study aimed to provide improved options for the extraction and identification of microparticles.

References

1 

Burnouf T, Goubran HA, Chou ML, Devos D and Radosevic M: Platelet microparticles: Detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev. 28:155–166. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Semple JW, Italiano JE Jr and Freedman J: Platelets and the immune continuum. Nat Rev Immunol. 11:264–274. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Clark SR, Thomas CP, Hammond VJ, Aldrovandi M, Wilkinson GW, Hart KW, Murphy RC, Collins PW and O'Donnell VB: Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc Natl Acad Sci USA. 110:5875–5880. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Mooberry MJ and Key NS: Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A. 89:111–122. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Montoro-García S, Shantsila E, Marín F, Blann A and Lip GY: Circulating microparticles: New insights into the biochemical basis of microparticle release and activity. Basic Res Cardiol. 106:911–923. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Kailashiya J: Platelet-derived microparticles analysis: Techniques, challenges and recommendations. Anal Biochem. 546:78–85. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Burnier L, Fontana P, Kwak BR and Angelillo-Scherrer A: Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 101:439–451. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Horstman LL and Ahn YS: Platelet microparticles: A wide-angle perspective. Crit Rev Oncol Hematol. 30:111–142. 1999. View Article : Google Scholar : PubMed/NCBI

9 

VanWijk MJ, VanBavel E, Sturk A and Nieuwland R: Microparticles in cardiovascular diseases. Cardiovasc Res. 59:277–287. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J and Heemskerk JW: Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett. 580:5313–5320. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W and Ruggeri ZM: Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 107:3537–3545. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Sims PJ, Faioni EM, Wiedmer T and Shattil SJ: Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem. 263:18205–18212. 1988.PubMed/NCBI

13 

Johnson L, Reade MC, Hyland RA, Tan S and Marks DC: In vitro comparison of cryopreserved and liquid platelets: Potential clinical implications. Transfusion. 55:838–847. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Brown GT and McIntyre TM: Lipopolysaccharide signaling without a nucleus: Kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J Immunol. 186:5489–5496. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Boilard E, Paré G, Rousseau M, Cloutier N, Dubuc I, Lévesque T, Borgeat P and Flamand L: Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood. 123:2854–2863. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang CY and Zen K: Platelet-Secreted MicroRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 192:437–446. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Bulut D, Becker V and Mügge A: Acetylsalicylate reduces endothelial and platelet-derived microparticles in patients with coronary artery disease. Can J Physiol Pharmacol. 89:239–244. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Murphy S and Gardner FH: Effect of storage temperature on maintenance of platelet viability-deleterious effect of refrigerated storage. N Engl J Med. 280:1094–1098. 1969. View Article : Google Scholar : PubMed/NCBI

19 

Bode AP and Knupp CL: Effect of cold storage on platelet glycoprotein 1B and vesiculation. Transfusion. 34:690–696. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Gupta N, Li W, Willard B, Silverstein RL and McIntyre TM: Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol. 34:160–168. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Morel O, Jesel L, Freyssinet JM and Toti F: Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol. 31:15–26. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Tersteeg C, Heijnen HF, Eckly A, Pasterkamp G, Urbanus RT, Maas C, Hoefer IE, Nieuwland R, Farndale RW, Gachet C, et al: FLow-induced PRotrusions (FLIPRs): A platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ Res. 114:780–791. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Mattheij NJ, Gilio K, van Kruchten R, Jobe SM, Wieschhaus AJ, Chishti AH, Collins P, Heemskerk JW and Cosemans JM: Dual mechanism of integrin alphaIIbβ3 closure in procoagulant platelets. J Biol Chem. 288:13325–13336. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Bettache N, Gaffet P, Allegre N, Maurin L, Toti F, Freyssinet JM and Bienvenüe A: Impaired redistribution of aminophospholipids with distinctive cell shape change during Ca2+-induced activation of platelets from a patient with Scott syndrome. Br J Haematol. 101:50–58. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Choo HJ, Saafir TB, Mkumba L, Wagner MB and Jobe SM: Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol. 32:2946–2955. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S and Brisson AR: Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 12:614–627. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Nolan JP: Flow cytometry of extracellular vesicles: Potential, Pitfalls, and Prospects. Curr Protoc Cytom. 73:1–16. 2015.PubMed/NCBI

28 

Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M and Italiano JE Jr: Megakaryocyte-derived microparticles: Direct visualization and distinction from platelet-derived microparticles. Blood. 113:1112–1121. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Rank A, Nieuwland R, Delker R, Köhler A, Toth B, Pihusch V, Wilkowski R and Pihusch R: Cellular origin of platelet-derived microparticles in vivo. Thromb Res. 126:e255–e259. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S, et al: Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 10:e01456862015. View Article : Google Scholar : PubMed/NCBI

31 

Brisson AR, Tan S, Linares R, Gounou C and Arraud N: Extracellular vesicles from activated platelets: A semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets. 28:263–271. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Yuana Y, Koning RI, Kuil ME, Rensen PC, Koster AJ, Bertina RM and Osanto S: Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles. 22013.doi: 10.3402/jev.v2i0.21494.

33 

Ponomareva AA, Nevzorova TA, Mordakhanova ER, Andrianova IA, Rauova L, Litvinov RI and Weisel JW: Intracellular origin and ultrastructure of platelet-derived microparticles. J Thromb Haemost. 15:1655–1667. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Guo, J., Feng, C., Zhang, B., Zhang, S., Shen, X., Zhu, J., & Zhao, X. (2019). Extraction and identification of platelet‑derived microparticles. Molecular Medicine Reports, 20, 2916-2921. https://doi.org/10.3892/mmr.2019.10484
MLA
Guo, J., Feng, C., Zhang, B., Zhang, S., Shen, X., Zhu, J., Zhao, X."Extraction and identification of platelet‑derived microparticles". Molecular Medicine Reports 20.3 (2019): 2916-2921.
Chicago
Guo, J., Feng, C., Zhang, B., Zhang, S., Shen, X., Zhu, J., Zhao, X."Extraction and identification of platelet‑derived microparticles". Molecular Medicine Reports 20, no. 3 (2019): 2916-2921. https://doi.org/10.3892/mmr.2019.10484