Identification of clinically relevant subgroups of COPD based on airway and circulating autoantibody profiles

  • Authors:
    • Zhenyu Liang
    • Fei Long
    • Fengyan Wang
    • Yuqiong Yang
    • Jing Xiao
    • Kuimiao Deng
    • Weili Gu
    • Luqian Zhou
    • Jiaxing Xie
    • Wenhua Jian
    • Xin Chen
    • Mei Jiang
    • Jinping Zheng
    • Tao Peng
    • Rongchang Chen
  • View Affiliations

  • Published online on: July 12, 2019     https://doi.org/10.3892/mmr.2019.10498
  • Pages: 2882-2892
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Autoimmunity may serve a role in the pathological features of a subgroup of patients with chronic obstructive pulmonary disease (COPD); however, in immunological subgroups of COPD patients, the interrelationships between airway and circulating autoantibody responses, and clinical parameters, remain unclear. The present study was undertaken to evaluate these interrelationships in various immunological subgroups of COPD patients. Sputum supernatant and serum obtained from 102 patients with stable COPD were assayed for the presence of immunoglobulin G antibodies against ten autoantigens via Luminex multiplex technology. Hierarchical clustering based on principal components was performed on autoantibody profiles to classify patients into clusters. Network‑based and module analyses were conducted to explore interrelationships among autoantibodies and clinical variables in each cluster. Topological characteristics were compared between clusters. Unsupervised clustering identified four clusters: No significant differences in the majority of clinical characteristics were observed among clusters. In cluster 1, retrospective exacerbation was only positively associated with COPD assessment test score. Lung functions (predicted % of forced expiratory volume in 1 sec and maximal mid‑expiratory flow) were negatively associated with exacerbation risk only in cluster 2. Sputum autoantibodies (against U1 small nuclear ribonucleoprotein, proteinase‑3 and Ro/Sjögren syndrome type A antigen) were negatively associated with exacerbation risks in cluster 2, but positively associated in cluster 3. The four networks also exhibited distinct topological properties. In COPD, autoantibody responses were heterogeneous and differentially associated with exacerbation risk in certain subgroups; their dual character should be considered in future research.

References

1 

Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, et al: Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 195:557–582. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Agusti A, Celli B and Faner R: What does endotyping mean for treatment in chronic obstructive pulmonary disease? Lancet. 390:980–987. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Lopez-Campos JL and Agusti A: Heterogeneity of chronic obstructive pulmonary disease exacerbations: A two-axes classification proposal. Lancet Respir Med. 3:729–734. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Agusti A, MacNee W, Donaldson K and Cosio M: Hypothesis: Does COPD have an autoimmune component? Thorax. 58:832–834. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Brusselle GG, Joos GF and Bracke KR: New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 378:1015–1026. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Polverino F, Seys LJ, Bracke KR and Owen CA: B cells in chronic obstructive pulmonary disease: Moving to center stage. Am J Physiol Lung Cell Mol Physiol. 311:L687–L695. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kheradmand F, Shan M, Xu C and Corry DB: Autoimmunity in chronic obstructive pulmonary disease: Clinical and experimental evidence. Expert Rev Clin Immunol. 8:285–292. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Cosio MG, Saetta M and Agusti A: Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 360:2445–2454. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Cosio MG: Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. Eur Respir J. 24:3–5. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Caramori G, Ruggeri P, Di Stefano A, Mumby S, Girbino G, Adcock IM and Kirkham P: Autoimmunity and COPD: Clinical Implications. Chest. 153:1424–1431. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Wen L, Krauss-Etschmann S, Petersen F and Yu X: Autoantibodies in chronic obstructive pulmonary disease. Front Immunol. 9:662018. View Article : Google Scholar : PubMed/NCBI

12 

Kim WD, Kim WS, Koh Y, Lee SD, Lim CM, Kim DS and Cho YJ: Abnormal peripheral blood T-lymphocyte subsets in a subgroup of patients with COPD. Chest. 122:437–444. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Liang Z, Long F, Deng K, Jian W, Zhou L, Zheng J, Huang A, Cui D, Jin A, Gao Y, et al: Sputum but not circulating autoantibodies associated with exacerbations risk in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 195:A52482017.

14 

Diez D, Agusti A and Wheelock CE: Network analysis in the investigation of chronic respiratory diseases. From basics to application. Am J Respir Crit Care Med. 190:981–988. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Barabasi AL, Gulbahce N and Loscalzo J: Network medicine: A network-based approach to human disease. Nat Rev Genet. 12:56–68. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Noell G, Faner R and Agusti A: From systems biology to P4 medicine: Applications in respiratory medicine. Eur Respir Rev. 27(pii): 1701102018. View Article : Google Scholar : PubMed/NCBI

17 

Watts G: Alvar Agusti: Bringing systems biology to COPD. Lancet. 390:9272017. View Article : Google Scholar : PubMed/NCBI

18 

Divo MJ, Casanova C, Marin JM, Pinto-Plata VM, de-Torres JP, Zulueta JJ, Cabrera C, Zagaceta J, Sanchez-Salcedo P, Berto J, et al: COPD comorbidities network. Eur Respir J. 46:640–650. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Grosdidier S, Ferrer A, Faner R, Piñero J, Roca J, Cosío B, Agustí A, Gea J, Sanz F and Furlong LI: Network medicine analysis of COPD multimorbidities. Respir Res. 15:1112014. View Article : Google Scholar : PubMed/NCBI

20 

Faner R, Gutierrez-Sacristan A, Castro-Acosta A, Grosdidier S, Gan W, Sánchez-Mayor M, Lopez-Campos JL, Pozo-Rodriguez F, Sanz F, Mannino D, et al: Molecular and clinical diseasome of comorbidities in exacerbated COPD patients. Eur Respir J. 46:1001–1010. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Noell G, Cosio BG, Faner R, Monsó E, Peces-Barba G, de Diego A, Esteban C, Gea J, Rodriguez-Roisin R, Garcia-Nuñez M, et al: Multi-level differential network analysis of COPD exacerbations. Eur Respir J. 50(pii): 17000752017. View Article : Google Scholar : PubMed/NCBI

22 

Global Strategy for the Diagnosis, Management and Prevention of COPD - 2015, . Global Initiative for Chronic Obstructive Lung Disease (GOLD), Fontana, WI. 2015, simplehttp://goldcopd.org

23 

Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al: Standardisation of spirometry. Eur Respir J. 26:319–338. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Paggiaro PL, Chanez P, Holz O, Ind PW, Djukanović R, Maestrelli P and Sterk PJ: Sputum induction. Eur Respir J Suppl. 37:3S–8S. 2002.PubMed/NCBI

25 

Bafadhel M, McCormick M, Saha S, McKenna S, Shelley M, Hargadon B, Mistry V, Reid C, Parker D, Dodson P, et al: Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration. 83:36–44. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Mackay IR, Leskovsek NV and Rose NR: Cell damage and autoimmunity: A critical appraisal. J Autoimmun. 30:5–11. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Packard TA, Li QZ, Cosgrove GP, Bowler RP and Cambier JC: COPD is associated with production of autoantibodies to a broad spectrum of self-antigens, correlative with disease phenotype. Immunol Res. 55:48–57. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Hoenderdos K and Condliffe A: The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 48:531–539. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, Piconese S, Parenza M, Guiducci C, Vitali C and Colombo MP: Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 120:3007–3018. 2012. View Article : Google Scholar : PubMed/NCBI

30 

de Hoon MJ, Imoto S, Nolan J and Miyano S: Open source clustering software. Bioinformatics. 20:1453–1454. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Page RD: TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci. 12:357–358. 1996.PubMed/NCBI

32 

Bastian M, Heymann S and Jacomy M: Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media; San Jose, CA: pp. p22009

33 

Cheng G, Zhang N, Wang Y, Rui J, Yin X and Cui T: Antibodies of IgG, IgA and IgM against human bronchial epithelial cell in patients with chronic obstructive pulmonary disease. Clin Lab. 62:1101–1108. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Sigari N, Moghimi N, Shahraki FS, Mohammadi S and Roshani D: Anti-cyclic citrullinated peptide (CCP) antibody in patients with wood-smoke-induced chronic obstructive pulmonary disease (COPD) without rheumatoid arthritis. Rheumatol Int. 35:85–91. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Xiong Y, Gao S, Luo G, Cheng G, Huang W, Jiang R, Wang Y and Cui T: Increased circulating autoantibodies levels of IgG, IgA, IgM against cytokeratin 18 and cytokeratin 19 in chronic obstructive pulmonary disease. Arch Med Res. 48:79–87. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Luo XM, Liu XY, Tang JH, Yang W, Ni ZH, Chen QG and Wang X: Autoantibodies against CD80 in patients with COPD. Clin Transl Immunology. 5:e1032016. View Article : Google Scholar : PubMed/NCBI

37 

Shindi R, Almehairi A, Negm OH, Kalsheker N, Gale NS, Shale DJ, Harrison TW, Bolton CE, John M, Todd I, et al: Autoantibodies of IgM and IgG classes show differences in recognition of multiple autoantigens in chronic obstructive pulmonary disease. Clin Immunol. 183:344–353. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Lee SD, Huang MS, Kang J, Lin CH, Park MJ, Oh YM, Kwon N, Jones PW and Sajkov D; Investigators of the Predictive Ability of CAT in Acute Exacerbations of COPD (PACE) Study, : The COPD assessment test (CAT) assists prediction of COPD exacerbations in high-risk patients. Respir Med. 108:600–608. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Mullerova H, Maselli DJ, Locantore N, Vestbo J, Hurst JR, Wedzicha JA, Bakke P, Agusti A and Anzueto A: Hospitalized exacerbations of COPD: Risk factors and outcomes in the ECLIPSE cohort. Chest. 147:999–1007. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Soriano JB, Lamprecht B, Ramirez AS, Martinez-Camblor P, Kaiser B, Alfageme I, Almagro P, Casanova C, Esteban C, Soler-Cataluña JJ, et al: Mortality prediction in chronic obstructive pulmonary disease comparing the GOLD 2007 and 2011 staging systems: A pooled analysis of individual patient data. Lancet Respir Med. 3:443–450. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Liang Z, Liu L, Zhao H, Xia Y, Zhang W, Ye Y, Jiang M and Cai S: A systemic inflammatory endotype of asthma with more severe disease identified by unbiased clustering of the serum cytokine profile. Medicine (Baltimore). 95:e37742016. View Article : Google Scholar : PubMed/NCBI

42 

Hong Y, Park J, Jung YJ, Jeong JS, Kim JH and Kim WJ: Clinical significance of blood neutrophil differential count in patients with COPD. Eur Respir J. 50:PA39902017.

43 

Bartziokas K, Papaioannou AI, Loukides S, Papadopoulos A, Haniotou A, Papiris S and Kostikas K: Serum uric acid as a predictor of mortality and future exacerbations of COPD. Eur Respir J. 43:43–53. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Wood AM, de Pablo P, Buckley CD, Ahmad A and Stockley RA: Smoke exposure as a determinant of autoantibody titre in α1-antitrypsin deficiency and COPD. Eur Respir J. 37:32–38. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Brandsma CA, Kerstjens HA, Geerlings M, Kerkhof M, Hylkema MN, Postma DS and Timens W: The search for autoantibodies against elastin, collagen and decorin in COPD. Eur Respir J. 37:1289–1292. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Greene CM, Low TB, O'Neill SJ and McElvaney NG: Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med. 181:31–35. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, et al: Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 13:567–569. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Hurst JR: Exacerbation phenotyping in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 184:625–626. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Bhowmik A, Seemungal TA, Sapsford RJ and Wedzicha JA: Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 55:114–120. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Saetta M, Di Stefano A, Maestrelli P, Turato G, Ruggieri MP, Roggeri A, Calcagni P, Mapp CE, Ciaccia A and Fabbri LM: Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med. 150:1646–1652. 1994. View Article : Google Scholar : PubMed/NCBI

51 

Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, McCormick M, Haldar K, Kebadze T, Duvoix A, et al: Acute exacerbations of chronic obstructive pulmonary disease: Identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 184:662–671. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Gao P, Zhang J, He X, Hao Y, Wang K and Gibson PG: Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease. PLoS One. 8:e576782013. View Article : Google Scholar : PubMed/NCBI

53 

Miravitlles M, D'Urzo A, Singh D and Koblizek V: Pharmacological strategies to reduce exacerbation risk in COPD: A narrative review. Respir Res. 17:1122016. View Article : Google Scholar : PubMed/NCBI

54 

GH Y: Global adult tobacco survey (GATS) China 2010 country report. China Sanxia Press; Beijing, China: 2011

55 

Liu S, Zhou Y, Wang X, Wang D, Lu J, Zheng J, Zhong N and Ran P: Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 62:889–897. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liang, Z., Long, F., Wang, F., Yang, Y., Xiao, J., Deng, K. ... Chen, R. (2019). Identification of clinically relevant subgroups of COPD based on airway and circulating autoantibody profiles. Molecular Medicine Reports, 20, 2882-2892. https://doi.org/10.3892/mmr.2019.10498
MLA
Liang, Z., Long, F., Wang, F., Yang, Y., Xiao, J., Deng, K., Gu, W., Zhou, L., Xie, J., Jian, W., Chen, X., Jiang, M., Zheng, J., Peng, T., Chen, R."Identification of clinically relevant subgroups of COPD based on airway and circulating autoantibody profiles". Molecular Medicine Reports 20.3 (2019): 2882-2892.
Chicago
Liang, Z., Long, F., Wang, F., Yang, Y., Xiao, J., Deng, K., Gu, W., Zhou, L., Xie, J., Jian, W., Chen, X., Jiang, M., Zheng, J., Peng, T., Chen, R."Identification of clinically relevant subgroups of COPD based on airway and circulating autoantibody profiles". Molecular Medicine Reports 20, no. 3 (2019): 2882-2892. https://doi.org/10.3892/mmr.2019.10498