MicroRNA‑671‑3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes

  • Authors:
    • Zhengjie Liu
    • Shunguang Chen
    • Yezi Yang
    • Shengjun Lu
    • Xunming Zhao
    • Biao Hu
    • Hong Pei
  • View Affiliations

  • Published online on: July 11, 2019     https://doi.org/10.3892/mmr.2019.10488
  • Pages: 2843-2850
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and joint inflammation. A previous study showed that microRNA (miR)‑671‑3p is involved in the development of OA, however, its function and molecular target in chondrocytes during the pathogenesis of OA remain to be fully elucidated. In the present study, miR‑671‑3p was significantly downregulated in knee OA cartilage tissues compared with normal cartilage tissues. The expression levels of pro‑inflammatory cytokines, including interleukin (IL)‑1β, IL‑6, IL‑8 and tumor necrosis factor (TNF)‑α, in the knee OA cartilage tissues were significantly higher than those in the normal cartilage tissues. Through gain‑of‑function and loss‑of‑function experiments, miR‑671‑3p was shown to significantly affect matrix synthesis gene expression, cell proliferation, apoptosis and inflammation in chondrocytes from patients with OA. Subsequent bioinformatics analysis identified potential target sites of the miR‑671‑3p located in the 3'untranslated region of TNF receptor‑associated factor (TRAF3). The results of a dual‑luciferase reporter assay showed that TRAF3 is a target gene of miR‑671‑3p. Western blot analysis demonstrated that miR‑671‑3p inhibited the gene expression of TRAF3. Furthermore, the restoration of TRAF3 markedly abrogated the effect of miR‑671‑3p. Taken together, the present study suggests that miR‑671‑3p may be important in the pathogenesis of OA through targeting TRAF3 and regulating chondrocyte apoptosis and inflammation, which may be a potential molecular target for OA treatment.

References

1 

Johnson VL and Hunter DJ: The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 28:5–15. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Kiadaliri AA, Lohmander LS, Moradi-Lakeh M, Petersson IF and Englund M: High and rising burden of hip and knee osteoarthritis in the Nordic region, 1990–2015. Acta Orthop. 89:177–183. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Showery JE, Kusnezov NA, Dunn JC, Bader JO, Belmont PJ Jr and Waterman BR: The rising incidence of degenerative and posttraumatic osteoarthritis of the knee in the United States Military. J Arthroplasty. 31:2108–2114. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar : PubMed/NCBI

5 

van der Kraan PM, Blaney Davidson EN, Blom A and van den Berg WB: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: Modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis Cartilage. 17:1539–1545. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Martin JA and Buckwalter JA: Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 3:257–264. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Hashimoto S, Ochs RL, Komiya S and Lotz M: Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 41:1632–1638. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Tüfekci KU, Meuwissen RL and Genç S: The role of microRNAs in biological processes. Methods Mol Biol. 1107:15–31. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Van Peer G, Mets E, Claeys S, De Punt I, Lefever S, Ongenaert M, Rondou P, Speleman F, Mestdagh P and Vandesompele J: A high-throughput 3′UTR reporter screening identifies microRNA interactomes of cancer genes. PLoS One. 13:e01940172018. View Article : Google Scholar : PubMed/NCBI

11 

Romaine SP, Tomaszewski M, Condorelli G and Samani NJ: MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 101:921–928. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Vicente R, Noël D, Pers YM, Apparailly F and Jorgensen C: Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol. 12:211–220. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Nugent M: MicroRNAs: Exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 24:573–580. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR and Haqqi TM: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62:1361–1371. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Abouheif MM, Nakasa T, Shibuya H, Niimoto T, Kongcharoensombat W and Ochi M: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 49:2054–2060. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Tardif G, Hum D, Pelletier JP, Duval N and Martel-Pelletier J: Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 10:1482009. View Article : Google Scholar : PubMed/NCBI

17 

Le LT, Swingler TE and Clark IM: Review: The role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 65:1963–1974. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Ntoumou E, Tzetis M, Braoudaki M, Lambrou G, Poulou M, Malizos K, Stefanou N, Anastasopoulou L and Tsezou A: Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes. Clin Epigenetics. 9:1272017. View Article : Google Scholar : PubMed/NCBI

19 

Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Häcker G, et al: Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature. 439:204–207. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL and Karin M: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol. 9:1364–1370. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Kong QZ, Guo LT, Yang JN, Wang YF, Zhao JX, Kong SH, Zhang M, Yan S and Jin Y: Anti-Inflammatory effects of TRAF-interacting protein in rheumatoid arthritis fibroblast-like synoviocytes. Mediators Inflamm. 2016:39061082016. View Article : Google Scholar : PubMed/NCBI

22 

Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Feldman D, et al: The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 34:505–514. 1991. View Article : Google Scholar : PubMed/NCBI

23 

Hautier A, Salentey V, Aubert-Foucher E, Bougault C, Beauchef G, Ronzière MC, De Sobarnitsky S, Paumier A, Galéra P, Piperno M, et al: Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro. Growth Factors. 26:201–211. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Helland Å, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, Sheppard KE, Etemadmoghadam D, Melnyk N, Rustgi AK, et al: Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One. 6:e180642011. View Article : Google Scholar : PubMed/NCBI

27 

Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, et al: A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 14:R782013. View Article : Google Scholar : PubMed/NCBI

28 

Miyaki S and Asahara H: Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 8:543–552. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Yin X, Wang JQ and Yan SY: Reduced miR26a and miR26b expression contributes to the pathogenesis of osteoarthritis via the promotion of p65 translocation. Mol Med Rep. 15:551–558. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhang Y, Jia J, Yang S, Liu X, Ye S and Tian H: MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med. 46:e792014. View Article : Google Scholar : PubMed/NCBI

31 

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA and Hynes RO: The extracellular matrix: Tools and insights for the ‘omics’ era. Matrix Biol. 49:10–24. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Rahmati M, Nalesso G, Mobasheri A and Mozafari M: Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev. 40:20–30. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Goldring MB: Osteoarthritis and cartilage: The role of cytokines. Curr Rheumatol Rep. 2:459–465. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Häcker H, Tseng PH and Karin M: Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol. 11:457–468. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, Brittain GC, Stansberg C, Torkildsen Ø, Wang X, et al: Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med. 19:595–602. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Lalani AI, Moore CR, Luo C, Kreider BZ, Liu Y, Morse HC III and Xie P: Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. J Immunol. 194:334–348. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert RC and Xiao C: Transfection of microRNA mimics should be used with caution. Front Genet. 6:3402015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Z., Chen, S., Yang, Y., Lu, S., Zhao, X., Hu, B., & Pei, H. (2019). MicroRNA‑671‑3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes. Molecular Medicine Reports, 20, 2843-2850. https://doi.org/10.3892/mmr.2019.10488
MLA
Liu, Z., Chen, S., Yang, Y., Lu, S., Zhao, X., Hu, B., Pei, H."MicroRNA‑671‑3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes". Molecular Medicine Reports 20.3 (2019): 2843-2850.
Chicago
Liu, Z., Chen, S., Yang, Y., Lu, S., Zhao, X., Hu, B., Pei, H."MicroRNA‑671‑3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes". Molecular Medicine Reports 20, no. 3 (2019): 2843-2850. https://doi.org/10.3892/mmr.2019.10488