Open Access

Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells

  • Authors:
    • Bing Liu
    • Zheng‑Zhi Liu
    • Mei‑Ling Zhou
    • Jian‑Wei Lin
    • Xue‑Mei Chen
    • Zhu Li
    • Wen‑Bin Gao
    • Zhen‑Dong Yu
    • Tao Liu
  • View Affiliations

  • Published online on: July 25, 2019     https://doi.org/10.3892/mmr.2019.10529
  • Pages: 2823-2831
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In recent years, cellular immunotherapy has served an important role in the combined treatment of hepatocellular carcinoma. The possibility of specific cell therapies for the treatment of solid tumours has been further explored following the success of chimeric antigen receptor (CAR)‑T cell therapy in the treatment of haematological tumours. The present study aimed to evaluate the specificity and efficiency of c‑MET‑targeted CAR‑NK cell immunotherapy on human liver cancer in vitro. A CAR structure that targeted and recognised a c‑MET antigen was constructed. c‑MET‑CAR was transferred into primary NK cells using lentiviral infection. c‑MET‑positive HepG2 cells were used as an in vitro study model. The cytotoxicity assay results revealed that c‑MET‑CAR‑NK cells exhibited more specific cytotoxicity for HepG2 cells with high c‑MET expression compared with the lung cancer cell line H1299, which has low levels of c‑MET expression. The results of the present study demonstrated that c‑MET may be a specific and effective target for human liver cancer cell CAR‑NK immunotherapy. Based on these results, CAR‑NK cell‑based immunotherapy may provide a potential biotherapeutic approach for liver cancer treatment in the future.

References

1 

Yuan P, Chen TH, Chen ZW and Lin XQ: Calculation of life-time death probability due malignant tumors based on a sampling survey area in China. Asian Pac J Cancer Prev. 15:4307–4309. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, et al: Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update. Hepatol Int. 11:317–370. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Ma W, Wu L, Zhou F, Hong Z, Yuan Y and Liu Z: T cell-associated immunotherapy for hepatocellular carcinoma. Cell Physiol Biochem. 41:609–622. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Wang Z, Wu Z, Liu Y and Han W: New development in CAR-T cell therapy. J Hematol Oncol. 10:532017. View Article : Google Scholar : PubMed/NCBI

5 

DeFrancesco L: CAR-T cell therapy seeks strategies to harness cytokine storm. Nat Biotechnol. 32:6042014. View Article : Google Scholar : PubMed/NCBI

6 

Klingemann H: Are natural killer cells superior CAR drivers? Oncoimmunology. 3:e281472014. View Article : Google Scholar : PubMed/NCBI

7 

Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L and Koehl U: Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 6:212015. View Article : Google Scholar : PubMed/NCBI

8 

Bordon Y: Tumour immunology: Natural killer cells spy greedy tumours. Nat Rev Immunol. 18:772018. View Article : Google Scholar : PubMed/NCBI

9 

Rosenberg EB, Herberman RB, Levine PH, Halterman RH, McCoy JL and Wunderlich JR: Lymphocyte cytotoxicity reactions to leukemia-associated antigens in identical twins. Int J Cancer. 9:648–658. 1972. View Article : Google Scholar : PubMed/NCBI

10 

Qian X, Wang X and Jin H: Cell transfer therapy for cancer: Past, present, and future. J Immunol Res. 2014:5259132014. View Article : Google Scholar : PubMed/NCBI

11 

Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Bradley M, Zeytun A, Rafi-Janajreh A, Nagarkatti PS and Nagarkatti M: Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+ and Fas- tumor cells. Blood. 92:4248–4255. 1998.PubMed/NCBI

13 

Screpanti V, Wallin RP, Ljunggren HG and Grandien A: A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol. 167:2068–2073. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K and Yagita H: Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol. 163:1906–1913. 1999.PubMed/NCBI

15 

Brehm C, Huenecke S, Esser R, Kloess S, Quaiser A, Betz S, Zimmermann O, Soerensen J, Passweg JR, Klingebiel T, et al: Interleukin-2-stimulated natural killer cells are less susceptible to mycophenolate mofetil than non-activated NK cells: possible consequences for immunotherapy. Cancer Immunol Immunother. 63:821–833. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Campbell KS and Hasegawa J: Natural killer cell biology: An update and future directions. J Allergy Clin Immunol. 132:536–544. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Guillerey C, Huntington ND and Smyth MJ: Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 17:1025–1036. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Rezvani K, Rouce R, Liu E and Shpall E: Engineering natural killer cells for cancer immunotherapy. Mol Ther. 25:1769–1781. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Mehta RS and Rezvani K: Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 9:2832018. View Article : Google Scholar : PubMed/NCBI

20 

Fasolo A, Sessa C, Gianni L and Broggini M: Seminars in clinical pharmacology: An introduction to MET inhibitors for the medical oncologist. Ann Oncol. 24:14–20. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Furge KA, Zhang YW and Vande Woude GF: Met receptor tyrosine kinase: Enhanced signaling through adapter proteins. Oncogene. 19:5582–5589. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Ma PC, Maulik G, Christensen J and Salgia R: c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22:309–325. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Zhang YW, Su Y, Volpert OV and Vande Woude GF: Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA. 100:12718–12723. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Zhuang PH, Xu L, Gao L, Lu W, Ruan LT and Yang J: Correlations of microvascular blood flow of contrast-enhanced ultrasound and HGF/c-Met signaling pathway with clinicopathological features and prognosis of patients with hepatocellular carcinoma. Onco Targets Ther. 10:847–857. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G and Faivre S: Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology. 67:1132–1149. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Kim JH, Kim HS, Kim BJ, Jang HJ and Lee J: Prognostic value of c-Met overexpression in hepatocellular carcinoma: A meta-analysis and review. Oncotarget. 8:90351–90357. 2017.PubMed/NCBI

27 

Yan S, Jiao X, Zou H and Li K: Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases. Diagn Pathol. 10:622015. View Article : Google Scholar : PubMed/NCBI

28 

Pyo JS, Kang G, Cho WJ and Choi SB: Clinicopathological significance and concordance analysis of c-MET immunohistochemistry in non-small cell lung cancers: A meta-analysis. Pathol Res Pract. 212:710–716. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Liu Y, Yu XF, Zou J and Luo ZH: Prognostic value of c-Met in colorectal cancer: A meta-analysis. World J Gastroenterol. 21:3706–3710. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Xin Y, Jin D, Eppler S, Damico-Beyer LA, Joshi A, Davis JD, Kaur S, Nijem I, Bothos J, Peterson A, et al: Population pharmacokinetic analysis from phase I and phase II studies of the humanized monovalent antibody, onartuzumab (MetMAb), in patients with advanced solid tumors. J Clin Pharmacol. 53:1103–1111. 2013.PubMed/NCBI

31 

Lohitesh K, Chowdhury R and Mukherjee S: Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 18:442018. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Q, Zhou M, Wu X, Li Z, Liu B, Gao W, Yue J and Liu T: Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model. J Trans Med. 17:1112019. View Article : Google Scholar

33 

Gandara C, Affleck V and Stoll EA: Manufacture of third- generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Methods. 29:1–15. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Wang YF, Kunda PE, Lin JW, Wang H, Chen XM, Liu QL and Liu T: Cytokine-induced killer cells co-cultured with complete tumor antigen-loaded dendritic cells, have enhanced selective cytotoxicity on carboplatin-resistant retinoblastoma cells. Oncol Rep. 29:1841–1850. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Jackson HJ and Brentjens RJ: Overcoming antigen escape with CAR T-cell therapy. Cancer Discov. 5:1238–1240. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Harjes U: CAR antigens beyond recognition. Nat Rev Cancer. 18:7232018. View Article : Google Scholar : PubMed/NCBI

37 

Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nature immunology. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, Levine JE, Qayed M, Grupp SA, Boyer M, et al: Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 24:1504–1506. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Li Y, Hermanson DL, Moriarity BS and Kaufman DS: Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 23:181–192, e185. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Oelsner S, Waldmann A, Billmeier A, Röder J, Lindner A, Ullrich E, Marschalek R, Dotti G, Jung G, Grosse-Hovest L, et al: Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer. Mar 13–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

41 

Shiozawa M, Chang CH, Huang YC, Chen YC, Chi MS, Hao HC, Chang YC, Takeda S, Chi KH and Wang YS: Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 19:272018. View Article : Google Scholar : PubMed/NCBI

42 

Escors D and Breckpot K: Lentiviral vectors in gene therapy: Their current status and future potential. Arch Immunol Ther Exp (Warsz). 58:107–119. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Schambach A, Zychlinski D, Ehrnstroem B and Baum C: Biosafety features of lentiviral vectors. Hum Gene Ther. 24:132–142. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, B., Liu, Z., Zhou, M., Lin, J., Chen, X., Li, Z. ... Liu, T. (2019). Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Molecular Medicine Reports, 20, 2823-2831. https://doi.org/10.3892/mmr.2019.10529
MLA
Liu, B., Liu, Z., Zhou, M., Lin, J., Chen, X., Li, Z., Gao, W., Yu, Z., Liu, T."Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells". Molecular Medicine Reports 20.3 (2019): 2823-2831.
Chicago
Liu, B., Liu, Z., Zhou, M., Lin, J., Chen, X., Li, Z., Gao, W., Yu, Z., Liu, T."Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells". Molecular Medicine Reports 20, no. 3 (2019): 2823-2831. https://doi.org/10.3892/mmr.2019.10529