Open Access

Downregulated microRNA‑133a induces HUVECs injury: Potential role of the (pro) renin receptor in angiotensin II‑dependent hypertension

  • Authors:
    • Bing Liu
    • Ming Lan
    • Huali Wei
    • Dapeng Zhang
    • Junmeng Liu
    • Jiwei Teng
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/mmr.2019.10519
  • Pages: 2796-2804
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The renin‑angiotensin system (RAS) serves an essential role in hypertension. MicroRNAs (miRs) have been reported to be important regulators in angiotensin (Ang) II‑dependent hypertension. We aimed to explore the roles of Ang II and miR‑133a in the mechanism underlying hypertension. Human umbilical vein endothelial cells (HUVECs) were identified by immunofluorescence staining. Cell viability and miR‑133a expression under the inhibition of Ang II of various concentrations were determined by an MTT assay and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), respectively. The effects of HUVECs transfected with miR‑133a mimic or inhibitor on Ang II‑induced apoptosis were measured using flow cytometry. The potential targeting of miR‑133a to the 3' untranslated region of (pro) renin receptor (PRR) was assessed using TargetScan and a dual‑luciferase assay. The effects of PRR interference using small interfering (si)RNA on PRR expression and the rate of apoptosis were determined by RT‑qPCR, western blotting and flow cytometry, respectively. Ang II at a concentration of 10‑5 M significantly inhibited the cell viability (P<0.05) and miR‑133a expression (P<0.01); Downregulation of miR‑133a suppressed cell viability. HUVECs transfected with miR‑133a mimic reduced the rate of Ang II‑induced apoptosis from 21.99 to 12.38%, but miR‑133a inhibitor promoted Ang II‑induced apoptosis (apoptosis rate, 28.9%). PRR was predicted to be a target gene of miR‑133a. Transfection with siPRR decreased the apoptotic rate in Ang II + negative control and Ang II + miR‑133a inhibitor group to 11.39 and 12.94%, respectively. Our findings also suggested that Ang II promoted PRR expression to enhance the apoptotic rate of HUVECs via the suppression of miR‑133a. Furthermore, siPRR efficiently decreased the Ang II‑induced apoptosis.

References

1 

Hodgson TA and Cai L: Medical care expenditures for hypertension, its complications, and its comorbidities. Medical Care. 39:599–615. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Ponticos M and Smith BD: Extracellular matrix synthesis in vascular disease: Hypertension, and atherosclerosis. J Biomed Res. 28:25–39. 2014.PubMed/NCBI

3 

Rizzoni D and Agabiti-Rosei E: Structural abnormalities of small resistance arteries in essential hypertension. Intern Emerg Med. 7:205–212. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Tang NP, Li H, Qiu YL, Zhou GM, Wang Y, Ma J and Mei QB: The effects of microgravity on blood vessels and vascular endothelial cells. Sheng Li Ke Xue Jin Zhan. 45:385–390. 2014.(In Chinese). PubMed/NCBI

5 

Bali A and Jaggi AS: Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci. 27:301–315. 2016.PubMed/NCBI

6 

Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR and Davisson RL: Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 91:1038–1045. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Becari C, Oliveira EB and Salgado MC: Alternative pathways for angiotensin II generation in the cardiovascular system. Braz J Med Biol Res. 44:914–919. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Naik P, Murumkar P, Giridhar R and Yadav MR: Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists-a perspective. Bioorg Med Chem. 18:8418–8456. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Messerli FH and Bangalore S: Angiotensin receptor blockers reduce cardiovascular events, including the risk of myocardial infarction. Circulation. 135:2085–2087. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC and Feng Y: Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension. 65:352–361. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Li XC and Zhuo JL: Recent updates on the proximal tubule Renin-angiotensin system in angiotensin II-Dependent hypertension. Curr Hypertens Rep. 18:632016. View Article : Google Scholar : PubMed/NCBI

12 

Gonzalez AA, Lara LS, Luffman C, Seth DM and Prieto MC: Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension. 57:859–864. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Morimoto S, Ando T, Niiyama M, Seki Y, Yoshida N, Watanabe D, Kawakami-Mori F, Kobori H, Nishiyama A and Ichihara A: Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens Res. 37:642–648. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Castoldi G, Di Gioia CR, Bombardi C, Catalucci D, Corradi B, Gualazzi MG, Leopizzi M, Mancini M, Zerbini G, Condorelli G, et al: MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 227:850–856. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, Sullivan MN, Earley S, Danser AH, Ichihara A and Feng Y: Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension. 63:316–323. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Gonzalez AA and Prieto MC: Roles of collecting duct renin and (pro)renin receptor in hypertension: Mini review. Ther Adv Cardiovasc Dis. 9:191–200. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Bartel DP: MicroRNA target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Kriegel AJ, Baker MA, Liu Y, Liu P, Cowley AW Jr and Liang M: Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 66:793–799. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Dorn GW II: MicroRNAs in cardiac disease. Transl Res. 157:226–235. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Kontaraki JE, Marketou ME, Parthenakis FI, Maragkoudakis S, Zacharis EA, Petousis S, Kochiadakis GE and Vardas PE: Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. J Am Soc Hypertens. 9:802–810. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM and Dorn GW II: MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 106:166–175. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Wu Y, Huang A, Li T, Su X, Ding H, Li H, Qin X, Hou L, Zhao Q, Ge X, et al: MiR-152 reduces human umbilical vein endothelial cell proliferation and migration by targeting ADAM17. FEBS Lett. 588:2063–2069. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Han G, Wei Z, Cui H, Zhang W, Wei X, Lu Z and Bai X: NUSAP1 gene silencing inhibits cell proliferation, migration and invasion through inhibiting DNMT1 gene expression in human colorectal cancer. Exp Cell Res. 367:216–221. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Shan H, Zhang S, Wei X, Li X, Qi H, He Y, Liu A, Luo D and Yu X: Protection of endothelial cells against Ang II-induced impairment: Involvement of both PPARa and PPARγ via PI3K/Akt pathway. Clin Exp Hypertens. 38:571–577. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Pourgholami MH, Khachigian LM, Fahmy RG, Badar S, Wang L, Chu SW and Morris DL: Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem Biophys Res Commun. 397:729–734. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Gkaliagkousi E, Gavriilaki E, Triantafyllou A and Douma S: Clinical Significance of endothelial dysfunction in essential hypertension. Curr Hypertens Rep. 17:852015. View Article : Google Scholar : PubMed/NCBI

28 

Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S and Rainaldi G: MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 108:3068–3071. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Ooi JY, Bernardo BC and Mcmullen JR: The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem. 6:205–222. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S and Nunes KP: The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res. 120:88–96. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Cha SA, Park BM and Kim SH: Angiotensin-(1–9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. Korean J Physiol Pharmacol. 22:447–456. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Condorelli G, Latronico MV and Cavarretta E: microRNAs in cardiovascular diseases: Current knowledge and the road ahead. J Am Coll Cardiol. 63:2177–2187. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Dluzen DF, Kim Y, Bastian P, Zhang Y, Lehrmann E, Becker KG, Noren Hooten N and Evans MK: MicroRNAs modulate oxidative stress in hypertension through PARP-1 regulation. Oxid Med Cell Longev. 2017:39842802017. View Article : Google Scholar : PubMed/NCBI

34 

Yang T: Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharmacol. 21:89–94. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Williamson CR, Khurana S, Nguyen P, Byrne CJ and Tai TC: Comparative analysis of renin-angiotensin system (RAS)-related gene expression between hypertensive and normotensive rats. Med Sci Monit Basic Res. 23:20–24. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H and Yang T: Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens. 35:1899–1908. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Christodoulatos GS and Dalamaga M: Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol. 5:71–81. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Bécard G and Combier JP: Primary transcripts of microRNAs encode regulatory peptides. Nature. 520:90–93. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Sharma NM, Nandi SS, Zheng H, Mishra PK and Patel KP: A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. Am J Physiol Heart Circ Physiol. 312:H968–H979. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Haque R, Hur EH, Farrell AN, Iuvone PM and Howell JC: MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells. Mol Vis. 21:224–235. 2015.PubMed/NCBI

41 

Wang Y, Lumbers ER, Arthurs AL, Corbisier de Meaultsart C, Mathe A, Avery-Kiejda KA, Roberts CT, Pipkin FB, Marques FZ, et al: Regulation of the human placental (pro)renin receptor-prorenin-angiotensin system by microRNAs. Mol Hum Reprod. 24:453–464. 2018.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, B., Lan, M., Wei, H., Zhang, D., Liu, J., & Teng, J. (2019). Downregulated microRNA‑133a induces HUVECs injury: Potential role of the (pro) renin receptor in angiotensin II‑dependent hypertension. Molecular Medicine Reports, 20, 2796-2804. https://doi.org/10.3892/mmr.2019.10519
MLA
Liu, B., Lan, M., Wei, H., Zhang, D., Liu, J., Teng, J."Downregulated microRNA‑133a induces HUVECs injury: Potential role of the (pro) renin receptor in angiotensin II‑dependent hypertension". Molecular Medicine Reports 20.3 (2019): 2796-2804.
Chicago
Liu, B., Lan, M., Wei, H., Zhang, D., Liu, J., Teng, J."Downregulated microRNA‑133a induces HUVECs injury: Potential role of the (pro) renin receptor in angiotensin II‑dependent hypertension". Molecular Medicine Reports 20, no. 3 (2019): 2796-2804. https://doi.org/10.3892/mmr.2019.10519