Open Access

miR‑185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2

  • Authors:
    • Chaojian Liu
    • Lajia Cai
    • Haomiao Li
  • View Affiliations

  • Published online on: July 25, 2019     https://doi.org/10.3892/mmr.2019.10534
  • Pages: 2774-2782
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) have been proposed as potential prognostic and diagnostic biomarkers in numerous types of cancer, including osteosarcoma (OS), which is the most common bone malignancy. The present study revealed that the expression of miR‑185 was downregulated in OS tissues and cells. Overexpression of miR‑185 significantly suppressed the proliferation and migration of OS cells. To further investigate the functional roles of miR‑185 in OS, the downstream targets of miR‑185 were predicted using the microRNA.org database. The results revealed that in cancer cells, hexokinase 2 (HK2), the rate‑limiting enzyme of glycolysis, was a potential target of miR‑185. Molecular analysis indicated that miR‑185 binds to the 3'‑untranslated region of HK2 mRNA. Overexpressed miR‑185 downregulated the mRNA and protein levels of HK2 in OS cells. In addition, an inverse correlation between the expression of miR‑185 and HK2 was reported in OS. Consistent with the downregulation of HK2 induced by miR‑185, overexpression of HK2 in OS cells significantly attenuated the inhibitory effects of miR‑185 on glucose consumption and lactate production, while depletion of miR‑185 promoted the glycolysis of OS cells. Additionally, restoration of HK2 abolished the inhibitory effects of miR‑185 on the proliferation of OS cells. In summary, these results revealed that miR‑185 suppressed the glucose metabolism of OS cells; thus, miR‑185 may be considered as a promising therapeutic target for the treatment of OS.

References

1 

Friebele JC, Peck J, Pan X, Abdel-Rasoul M and Mayerson JL: Osteosarcoma: A Meta-analysis and review of the literature. Am J Orthop (Belle Mead NJ). 44:547–553. 2015.PubMed/NCBI

2 

Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP, González MV, Baldini N, Garcia-Castro J and Rodriguez R: Osteosarcoma: Cells-of-Origin, cancer stem cells, and targeted therapies. Stem Cells Int. 2016:36317642016. View Article : Google Scholar : PubMed/NCBI

3 

Brown HK, Tellez-Gabriel M and Heymann D: Cancer stem cells in osteosarcoma. Cancer Lett. 386:189–195. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Moore DD and Luu HH: Osteosarcoma. Cancer Treat Res. 162:65–92. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Ottaviani G and Jaffe N: The epidemiology of osteosarcoma. Cancer Treat Res. 152:3–13. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Bernthal NM, Federman N, Eilber FR, Nelson SD, Eckardt JJ, Eilber FC and Tap WD: Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer. 118:5888–5893. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Luetke A, Meyers PA, Lewis I and Juergens H: Osteosarcoma treatment-where do we stand? A state of the art review. Cancer Treat Rev. 40:523–532. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Geller DS and Gorlick R: Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 8:705–718. 2010.PubMed/NCBI

9 

Zhou W, Hao M, Du X, Chen K, Wang G and Yang J: Advances in targeted therapy for osteosarcoma. Discov Med. 17:301–307. 2014.PubMed/NCBI

10 

Cai Y, Yu X, Hu S and Yu J: A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 7:147–154. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Chang L, Shrestha S, LaChaud G, Scott MA and James AW: Review of microRNA in osteosarcoma and chondrosarcoma. Med Oncol. 32:6132015. View Article : Google Scholar : PubMed/NCBI

12 

Sampson VB, Yoo S, Kumar A, Vetter NS and Kolb EA: MicroRNAs and Potential Targets in Osteosarcoma: Review. Front Pediatr. 3:692015. View Article : Google Scholar : PubMed/NCBI

13 

Chen J, Zhou J, Chen X, Yang B, Wang D, Yang P, He X and Li H: miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumour Biol. 36:8221–8229. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Yuan G, Zhao Y, Wu D, Gao C and Jiao Z: miRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Future Oncol. 14:461–469. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO and Yasuda J: MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One. 4:e66772009. View Article : Google Scholar : PubMed/NCBI

16 

Qadir XV, Han C, Lu D, Zhang J and Wu T: miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. Am J Pathol. 184:2355–2364. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Zhi Q, Zhu J, Guo X, He S, Xue X, Zhou J, Hu B, Li H, Chen S, Zhao H and Kuang Y: Metastasis-related miR-185 is a potential prognostic biomarker for hepatocellular carcinoma in early stage. Biomed Pharmacother. 67:393–398. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Liu C, Li G, Ren S, Su Z, Wang Y, Tian Y, Liu Y and Qiu Y: miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro. Oncol Lett. 13:2631–2636. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Li G, Wang Y, Liu Y, Su Z, Liu C, Ren S, Deng T, Huang D, Tian Y and Qiu Y: miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci. 105:1560–1568. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Akram M: Mini-review on glycolysis and cancer. J Cancer Educ. 28:454–457. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Li XB, Gu JD and Zhou QH: Review of aerobic glycolysis and its key enzymes-new targets for lung cancer therapy. Thorac Cancer. 6:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Zheng J: Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett. 4:1151–1157. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Coelho RG, Calaca IC, Celestrini DM, Correia-Carneiro AH, Costa MM, Zancan P and Sola-Penna M: Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 6:29375–29387. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Dai W, Wang F, Lu J, Xia Y, He L, Chen K, Li J, Li S, Liu T, Zheng Y, et al: By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 6:13703–13717. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Deng Y and Lu J: Targeting hexokinase 2 in castration-resistant prostate cancer. Mol Cell Oncol. 2:e9744652015. View Article : Google Scholar : PubMed/NCBI

26 

Lu CL, Qin L, Liu HC, Candas D, Fan M and Li JJ: Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition-a Warburg-reversing effect. PLoS One. 10:e01210462015. View Article : Google Scholar : PubMed/NCBI

27 

Viticchie G, Agostini M, Lena AM, Mancini M, Zhou H, Zolla L, Dinsdale D, Saintigny G, Melino G and Candi E: p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci USA. 112:11577–11582. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zhou Y, Lu N, Qiao C, Ni T, Li Z, Yu B, Guo Q and Wei L: FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells. Mol Carcinog. 55:1317–1328. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Katabi MM, Chan HL, Karp SE and Batist G: Hexokinase type II: A novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum Gene Ther. 10:155–164. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Brown RS, Goodman TM, Zasadny KR, Greenson JK and Wahl RL: Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol. 29:443–453. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Goel A, Mathupala SP and Pedersen PL: Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem. 278:15333–15340. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Jin Z, Gu J, Xin X, Li Y and Wang H: Expression of hexokinase 2 in epithelial ovarian tumors and its clinical significance in serous ovarian cancer. Eur J Gynaecol Onco. 35:519–524. 2014.

33 

Peschiaroli A, Giacobbe A, Formosa A, Markert EK, Bongiorno-Borbone L, Levine AJ, Candi E, D'Alessandro A, Zolla L, Finazzi Agrò A and Melino G: miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 32:797–802. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, Chen Z, Huang S, Gu J, Li J, et al: MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 62:1132–1144. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Zhou P, Chen WG and Li XW: MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer. Am J Cancer Res. 5:2056–2063. 2015.PubMed/NCBI

36 

Li LQ, Yang Y, Chen H, Zhang L, Pan D and Xie WJ: MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. Cancer Biomark. 17:75–81. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Wu Y, He H, Wu B, Wen J, Guo Z, Luo Y and Cao G: miR-125b suppresses the aerobic glycolysis of osteosarcoma HOS cells by downregulating the expression of hexokinase-2. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:1365–1370. 2017.(In Chinese). PubMed/NCBI

38 

Cates JMM: Simple staging system for osteosarcoma performs equivalently to the AJCC and MSTS systems. J Orthop Res. 36:2802–2808. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Garcia SN, Guedes RC and Marques MM: Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr Med Chem. Dec 12–2018.doi: 10.2174/0929867326666181213092652 (Epub ahead of print). View Article : Google Scholar

40 

Gentilin E, Degli Uberti E and Zatelli MC: Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 30:629–639. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Farazi TA, Spitzer JI, Morozov P and Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Kwak PB, Iwasaki S and Tomari Y: The microRNA pathway and cancer. Cancer Sci. 101:2309–2315. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Li S, Ma Y, Hou X, Liu Y, Li K, Xu S and Wang J: MiR-185 acts as a tumor suppressor by targeting AKT1 in non-small cell lung cancer cells. Int J Clin Exp Pathol. 8:11854–11862. 2015.PubMed/NCBI

44 

Tang H, Liu P, Yang L and Xie X, Ye F, Wu M, Liu X, Chen B, Zhang L and Xie X: miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 13:3185–3197. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Xia D, Li X, Niu Q, Liu X, Xu W, Ma C, Gu H, Liu Z, Shi L, Tian X, et al: MicroRNA-185 suppresses pancreatic cell proliferation by targeting transcriptional coactivator with PDZ-binding motif in pancreatic cancer. Exp Ther Med. 15:657–666. 2018.PubMed/NCBI

46 

Dong-Xu W, Jia L and Su-Juan Z: MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J Cancer. 52 (Suppl 3):E182–E185. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Anderson M, Marayati R, Moffitt R and Yeh JJ: Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget. 8:56081–56094. 2016.PubMed/NCBI

49 

Katagiri M, Karasawa H, Takagi K, Nakayama S, Yabuuchi S, Fujishima F, Naitoh T, Watanabe M, Suzuki T, Unno M and Sasano H: Hexokinase 2 in colorectal cancer: A potent prognostic factor associated with glycolysis, proliferation and migration. Histol Histopathol. 32:351–360. 2017.PubMed/NCBI

50 

Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 24:213–228. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Lv X, Yao L, Zhang J, Han P and Li C: Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism. Mol Med Rep. 14:1332–1338. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Lin Q, Ma L, Liu Z, Yang Z, Wang J, Liu J and Jiang G: Targeting microRNAs: A new action mechanism of natural compounds. Oncotarget. 8:15961–15970. 2017.PubMed/NCBI

53 

Zhao L, Zhang Y, Liu J, Yin W, Jin D, Wang D and Zhang W: MiR-185 inhibits cell proliferation and invasion of non-small cell lung cancer by targeting KLF7. Oncol Res. May 1–2018.10.3727/096504018X15247341491655 (Epub ahead of print). View Article : Google Scholar

54 

Afshar S, Najafi R, Sedighi Pashaki A, Sharifi M, Nikzad S, Gholami MH, Khoshghadam A, Amini R, Karimi J and Saidijam M: MiR-185 enhances radiosensitivity of colorectal cancer cells by targeting IGF1R and IGF2. Biomed Pharmacother. 106:763–769. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Jiang CY, Ruan Y, Wang XH, Zhao W, Jiang Q, Jing YF, Han BM, Xia SJ and Zhao FJ: MiR-185 attenuates androgen receptor function in prostate cancer indirectly by targeting bromodomain containing 8 isoform 2, an androgen receptor co-activator. Mol Cell Endocrinol. 427:13–20. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, C., Cai, L., & Li, H. (2019). miR‑185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2. Molecular Medicine Reports, 20, 2774-2782. https://doi.org/10.3892/mmr.2019.10534
MLA
Liu, C., Cai, L., Li, H."miR‑185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2". Molecular Medicine Reports 20.3 (2019): 2774-2782.
Chicago
Liu, C., Cai, L., Li, H."miR‑185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2". Molecular Medicine Reports 20, no. 3 (2019): 2774-2782. https://doi.org/10.3892/mmr.2019.10534