Open Access

Knockdown of microRNA‑143‑5p by STTM technology affects eumelanin and pheomelanin production in melanocytes

  • Authors:
    • Shuhui Qi
    • Bo Liu
    • Junzhen Zhang
    • Xuexian Liu
    • Changsheng Dong
    • Ruiwen Fan
  • View Affiliations

  • Published online on: July 12, 2019     https://doi.org/10.3892/mmr.2019.10492
  • Pages: 2649-2656
  • Copyright: © Qi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) serve various roles in the regulation of melanogenesis in mammalian melanocytes that contribute to the development of hair color. The manipulation of the melanocyte action is a new target for genetic improvement. Short tandem target mimic (STTM) is a potent approach for silencing miRNAs in plants and animals. To investigate the function of miR‑143‑5p in melanogenesis, STTM was used to block the expression of miR‑143‑5p (STTM‑miR‑143‑5p). The molecular analysis and luciferase reporter assay identified myosin Va gene (MYO5A) as one of the miR‑143‑5p targets. STTM‑miR‑143‑5p overexpression resulted in an increased expression of downstream melanogenesis genes including microphthalmia‑associated transcription factor (MITF), tyrosinase family members [tyrosinase (TYR) and tyrosinase‑related protein 1 (TYRP1)], melanophilin (MLPH), and Rab27a, thereby contributing to melanocyte pigmentation by promoting total alkali‑soluble melanogenesis (ASM) and eumelanin (EM) contents; conversely, STTM‑miR‑143‑5p overexpression resulted in decreased expression of the tyrosinase‑related protein 2 (TYRP2)/dopachrome tautomerase (DCT), which is responsible for decreased pheomelanin (PM) content in mouse melanocytes. The results indicated that melanin production in melanocytes could be increased by manipulating miR‑143‑5p expression using STTM which resulted in ASM and EM production.

References

1 

Ito S and Wakamatsu K: Chemistry of mixed melanogenesis-pivotal roles of dopaquinone. Photochem Photobiol. 84:582–592. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Vachtenheim J and Borovansky J: ‘Transcription physiology’ of pigment formation in melanocytes: Central role of MITF. Exp Dermatol. 19:617–627. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Levy C, Khaled M and Fisher DE: MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 12:406–414. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E, Ortonne JP and Ballotti R: Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: Pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol. 18:694–702. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Hume AN and Seabra MC: Melanosomes on the move: A model to understand organelle dynamics. Biochem Soc Trans. 39:1191–1196. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Matesic L, Yip R, Reuss AE, Swing DA, O'Sullivan TN, Fletcher CF, Copeland NG and Jenkins NA: Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA. 98:10238–10243. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Kuroda TS, Ariga H and Fukuda M: The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol Cell Biol. 23:5245–5255. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Wu X, Sakamoto T, Zhang F, Sell JR and Hammer JA III: In vitro reconstitution of a transport complex containing Rab27a, melanophilin and myosin Va. FEBS Lett. 580:5863–5868. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Rudolf R, Bittins CM and Gerdes HH: The role of myosin V in exocytosis and synaptic plasticity. J Neurochem. 116:177–191. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Alves CP, Yokoyama S, Goedert L, Pontes CLS, Sousa JF, Fisher DE and Espreafico EM: MYO5A gene is a target of MITF in melanocytes. J Invest Dermatol. 137:985–989. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Au SY and Huang JD: A tissue-specific exon of myosin Va is responsible for selective cargo binding in melanocytes. Cell Motility Cytoskeleton. 53:89–102. 2002. View Article : Google Scholar

12 

Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y and Tang X: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods. 58:118–125. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Bai R, Sen A, Yu Z, Yang G, Wang H, Fan R, Lv L, Lee KB, Smith GW and Dong C: Validation of methods for isolation and culture of alpaca melanocytes: A novel tool for in vitro studies of mechanisms controlling coat color. Asian Austral J Anim. 23:430–436. 2010. View Article : Google Scholar

14 

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI

15 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Dong C, Wang H, Xue L, Dong Y, Yang L, Fan R, Yu X, Tian X, Ma S and Smith GW: Coat color determination by miR-137 mediated down-regulation ofmicrophthalmia-associated transcription factor in a mouse model. RNA. 18:1679–1686. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Loftus SK: The next generation of melanocyte data: Genetic, epigenetic, and transcriptional resource datasets and analysis tools. Pigment Cell Melanoma Res. 31:442–447. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN and Srivastava D: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 460:705–710. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Kim KH, Lee TR and Cho EG: SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF. Exp Mol Med. 49:e3672017. View Article : Google Scholar : PubMed/NCBI

20 

Ji K, Zhang P, Zhang J, Fan R, Liu Y, Yang S, Hu S, Liu X and Dong C: MicroRNA 143-5p regulates alpaca melanocyte migration, proliferation, and melanogenesis. Exp Dermatol. 27:166–171. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Liu B, Zhang J, Yang S, Ji K, Liu X, Du B, Jia Q, Qi S, Li X and Fan R: Effect of silencing microrna-508 by STTM on melanogenesis in alpaca (Vicugna pacos). Gene. 678:343–348. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Sommer L: Generation of melanocytes from neural crest cells. Pigment Cell Melanoma Res. 24:411–421. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Tian X, Jiang J, Fan R, Wang H, Meng X, He X, He J, Li H, Geng J, Yu X, et al: Identification and characterization of microRNAs in white and brown alpaca skin. BMC Genomics. 13:5552012. View Article : Google Scholar : PubMed/NCBI

24 

Jackson IJ: Molecular and developmental genetics of mouse coat color. Annu Rev Genet. 28:189–217. 1994. View Article : Google Scholar : PubMed/NCBI

25 

Hume AN, Tarafder AK, Ramalho JS, Sviderskaya EV and Seabra MC: A coiled-coil domain of melanophilin is essential for Myosin Va recruitment and melanosome transport in melanocytes. Mol Biol Cell. 17:4720–4735. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Cichorek M, Wachulska M, Stasiewicz A and Tymińska A: Skin melanocytes: Biology and development. Postepy Dermatol Alergol. 30:30–41. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Wang P, Li Y, Hong W, Zhen J, Ren J, Li Z and Xu A: The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol Biosyst. 8:2924–2931. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Hartman ML and Czyz M: MITF in melanoma: Mechanisms behind its expression and activity. Cell Mol Life Sci. 72:1249–1260. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Pak BJ, Li Q, Kerbel RS and Ben-David Y: TYRP2-mediated resistance to cis-diamminedichloroplatinum (II) in human melanoma cells is independent of tyrosinase and TYRP1 expression and melanin content. Melanoma Res. 10:499–505. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Gaggioli C, Buscà R, Abbe P, Ortonne JP and Ballotti R: Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 16:374–382. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Harris ML, Fufa TD, Palmer JW, Joshi SS, Larson DM, Incao A, Gildea DE, Trivedi NS, Lee AN, Day CP, et al: A direct link between MITF, innate immunity, and hair graying. PLoS Biol. 16:e20036482018. View Article : Google Scholar : PubMed/NCBI

32 

Chang H, Choi H, Joo KM, Kim D and Lee TR: Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction. Pigment Cell Melanoma Res. 25:765–772. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Zerial M and McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2:107–117. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM and Seabra MC: The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic. 3:193–202. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Kuroda TS, Itoh T and Fukuda M: Functional analysis of slac2-a/melanophilin as a linker protein between Rab27A and myosin Va in melanosome transport. Methods Enzymol. 403:419–431. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Marks MS and Seabra MC: The melanosome: Membrane dynamics in black and white. Nat Rev Mol Cell Biol. 2:738–748. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qi, S., Liu, B., Zhang, J., Liu, X., Dong , C., & Fan, R. (2019). Knockdown of microRNA‑143‑5p by STTM technology affects eumelanin and pheomelanin production in melanocytes. Molecular Medicine Reports, 20, 2649-2656. https://doi.org/10.3892/mmr.2019.10492
MLA
Qi, S., Liu, B., Zhang, J., Liu, X., Dong , C., Fan, R."Knockdown of microRNA‑143‑5p by STTM technology affects eumelanin and pheomelanin production in melanocytes". Molecular Medicine Reports 20.3 (2019): 2649-2656.
Chicago
Qi, S., Liu, B., Zhang, J., Liu, X., Dong , C., Fan, R."Knockdown of microRNA‑143‑5p by STTM technology affects eumelanin and pheomelanin production in melanocytes". Molecular Medicine Reports 20, no. 3 (2019): 2649-2656. https://doi.org/10.3892/mmr.2019.10492