Open Access

MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes

  • Authors:
    • Chunfeng Hou
    • Dan Wang
    • Lihua Zhang
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/mmr.2019.10516
  • Pages: 2563-2570
  • Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial inflammation. Fibroblast‑like synoviocytes (FLS) serve a vital role in the initiation and perpetuation of the immune response in patients with RA. The present study aimed to investigate the potential role of microRNA (miR)‑34a‑3p in the pathogenesis of RA. FLS were collected from patients with RA and osteoarthritis (OA). The miR‑34a‑3p mimics and inhibitor vectors were constructed and transfected into RAFLS using Lipofectamine® 2000. Cell proliferation was determined by Cell Counting kit‑8 assay and cell cycle progression was analyzed by flow cytometry. In addition, the expression levels of cell cycle control genes, matrix metalloproteinase (MMP)‑1 and MMP‑9, and pro‑inflammatory cytokines were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The potential targets of miR‑34a‑3p were predicted by TargetScan and MiRWalk; the target genes were further verified using a luciferase reporter assay. The expression levels of miR‑34a‑3p were generally lower in RAFLS compared with in OAFLS. miR‑34a‑3p overexpression significantly inhibited the proliferation of FLS (P<0.01) by suppressing the expression levels of cyclin‑dependent kinase 2, cell division cycle 25A and cyclin D1 (P<0.01), and arresting FLS cell cycle progression at the G1 phase. Furthermore, the expression levels of MMP‑1 and 9 were markedly decreased, as were the mRNA and protein expression levels of pro‑inflammatory cytokines (tumor necrosis factor α and interleukin 6; P<0.01). Murine double minute 4 (MDM4) was predicted and verified as a potential target gene of miR‑34a‑3p; the 547‑554 nt position of the MDM4 3'‑untranslated region harbored one potential binding site for miR‑204‑3p. The results of the present study indicated that miR‑34a‑3p may be considered a promising therapeutic target for RA through inhibiting FLS proliferation and suppressing the production of pro‑inflammatory cytokines and MMPs.

References

1 

Smolen JS, Aletaha D and McInnes IB: Rheumatoid arthritis. Lancet. 388:2023–2038. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Li ZG, Liu Y, Xu HJ, Chen ZW, Bao CD, Gu JR, Zhao DB, An Y, Hwang LJ, Wang L, et al: Efficacy and safety of tofacitinib in chinese patients with rheumatoid arthritis. Chin Med J (Engl). 131:2683–2692. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Gibofsky A: Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care. 18:S295–S302. 2012.PubMed/NCBI

4 

Hawtree S, Muthana M and Wilson AG: The role of histone deacetylases in rheumatoid arthritis fibroblast-like synoviocytes. Biochem Soc Trans. 41:783–788. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Filer A, Ward LSC, Kemble S, Davies CS, Munir H, Rogers R, Raza K, Buckley CD, Nash GB and McGettrick HM: Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann Rheum Dis. 76:2105–2112. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Hirohata S and Sakakibara J: Angioneogenesis in rheumatoid arthritis. Lancet. 354:423–424. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, Nakashima T and Takayanagi H: RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 75:1187–1195. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Kim HR, Kim KW, Kim BM, Jung HG, Cho ML and Lee SH: Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol. 66:538–548. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Jung YK, Kang YM and Han S: Osteoclasts in the inflammatory arthritis: Implications for pathologic osteolysis. Immune Netw. 19:e22019. View Article : Google Scholar : PubMed/NCBI

10 

Xiao C and Rajewsky K: MicroRNA control in the immune system: Basic principles. Cell. 136:26–36. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C and Bosserhoff AK: Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol. 8:6607–6616. 2015.PubMed/NCBI

12 

Tavasolian F, Abdollahi E, Rezaei R, Momtazi-Borojeni AA, Henrotin Y and Sahebkar A: Altered expression of microRNAs in rheumatoid arthritis. J Cell Biochem. 119:478–487. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Ji JD, Kim TH, Lee B, Na KS, Choi SJ, Lee YH and Song GG: Integrated analysis of microRNA and mRNA expression profiles in rheumatoid arthritis synovial monocytes. J Rheum Dis. 18:253–263. 2011. View Article : Google Scholar

14 

Dang Q, Yang F, Lei H, Liu X, Yan M, Huang H, Fan X and Li Y: Inhibition of microRNA-34a ameliorates murine collagen-induced arthritis. Exp Ther Med. 14:1633–1639. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, Kolling C, Gay RE, Detmar M, Gay S, et al: Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64:1771–1779. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31:315–324. 1988. View Article : Google Scholar : PubMed/NCBI

17 

Bailon-Moscoso N, González-Arévalo G, Velásquez-Rojas G, Malagon O, Vidari G, Zentella-Dehesa A, Ratovitski EA and Ostrosky-Wegman P: Phytometabolite dehydroleucodine induces cell cycle arrest, apoptosis, and DNA damage in human astrocytoma cells through p73/p53 regulation. PLoS One. 10:e01365272015. View Article : Google Scholar : PubMed/NCBI

18 

Tao K, Yang J, Guo Z, Hu Y, Sheng H, Gao H and Yu H: Prognostic value of miR-221-3p, miR-342-3p and miR-491-5p expression in colon cancer. Am J Transl Res. 6:391–401. 2014.PubMed/NCBI

19 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Bustamante MF, Garcia-Carbonell R, Whisenant KD and Guma M: Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther. 19:1102017. View Article : Google Scholar : PubMed/NCBI

21 

Sotillo E, Laver T, Mellert H, Schelter JM, Cleary MA, McMahon S and Thomas-Tikhonenko A: Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene. 30:2587–2594. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M and Allgayer H: Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 30:2888–2899. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Zhang W, Chen L, Jiang Y and Shen Y: miR-26a-5p regulates synovial fibroblast invasion in patients with rheumatoid arthritis by targeting Smad 1. Med Sci Monit. 24:5178–5184. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Audo R, Deckert V, Daien CI, Che H, Elhmioui J, Lemaire S, Pais de Barros JP, Desrumaux C, Combe B, Hahne M, et al: PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity. PLoS One. 13:e01938152018. View Article : Google Scholar : PubMed/NCBI

25 

Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C and Bosserhoff AK: Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol. 8:4953–4962. 2015.PubMed/NCBI

26 

Jia W, Wu W, Yang D, Xiao C, Su Z, Huang Z, Li Z, Qin M, Huang M, Liu S, et al: Histone demethylase JMJD3 regulates fibroblast-like synoviocyte-mediated proliferation and joint destruction in rheumatoid arthritis. FASEB J. 32:4031–4042. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Bačević K, Lossaint G, Achour TN, Georget V, Fisher D and Dulić V: Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep. 7:134292017. View Article : Google Scholar : PubMed/NCBI

28 

Sherr CJ, Beach D and Shapiro GI: Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov. 6:353–367. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Zhou H, Shen T, Luo Y, Liu L, Chen W, Xu B, Han X, Pang J, Rivera CA and Huang S: The antitumor activity of the fungicide ciclopirox. Int J Cancer. 127:2467–2477. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Li F, Li X, Kou L, Li Y, Meng F and Ma F: SUMO-conjugating enzyme UBC9 promotes proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation. 37:1134–1141. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Yuan H, Yang P, Zhou D, Gao W, Qiu Z, Fang F, Ding S and Xiao W: Knockdown of sphingosine kinase 1 inhibits the migration and invasion of human rheumatoid arthritis fibroblast-like synoviocytes by down-regulating the PI3K/AKT activation and MMP-2/9 production in vitro. Mol Biol Rep. 41:5157–5165. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Mo WX, Yin SS, Chen H, Zhou C, Zhou JX, Zhao LD, Fei YY, Yang HX, Guo JB, Mao YJ, et al: Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann Rheum Dis. 76:2075–2084. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wei ST, Sun YH, Zong SH and Xiang YB: Serum levels of IL-6 and TNF-α may correlate with activity and severity of rheumatoid arthritis. Med Sci Monit. 21:4030–4038. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ and Xu J: Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 6:152018. View Article : Google Scholar : PubMed/NCBI

35 

Nishina N, Kaneko Y, Kameda H, Kuwana M and Takeuchi T: Reduction of plasma IL-6 but not TNF-α by methotrexate in patients with early rheumatoid arthritis: A potential biomarker for radiographic progression. Clin Rheumatol. 32:1661–1666. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, Seidah NG and Khatib AM: The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest. 111:1723–1732. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Abdollahzad H, Aghdashi MA, Asghari Jafarabadi M and Alipour B: Effects of coenzyme Q10 supplementation on inflammatory cytokines (TNF-α, IL-6) and oxidative stress in rheumatoid arthritis patients: A randomized controlled trial. Arch Med Res. 46:527–533. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS and Chung SH: IL-6 inhibitors for treatment of rheumatoid arthritis: Past, present, and future. Arch Pharm Res. 38:575–584. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Xu N, Wang Y, Li D, Chen G, Sun R, Zhu R, Sun S, Liu H, Yang G and Dong T: MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis. Biochem Biophys Res Commun. 401:417–421. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Kurowska-Stolarska M, Alivernini S, Melchor EG, Elmesmari A, Tolusso B, Tange C, Petricca L, Gilchrist DS, Di Sante G, Keijzer C, et al: MicroRNA-34a dependent regulation of AXL controls the activation of dendritic cells in inflammatory arthritis. Nat Commun. 8:158772017. View Article : Google Scholar : PubMed/NCBI

41 

Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X and Wang E: Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 10:3182010. View Article : Google Scholar : PubMed/NCBI

42 

Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González LS, Granados-López AJ, López-Hernández Y, Reyes-Estrada CA, Gutiérrez-Hernández R, Castañeda-Delgado JE, Ramírez-Hernández L, et al: 5p and 3p strands of miR-34 family members have differential effects in cell proliferation, migration, and invasion in cervical cancer cells. Int J Mol Sci. 20:2019. View Article : Google Scholar

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hou, C., Wang, D., & Zhang, L. (2019). MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes . Molecular Medicine Reports, 20, 2563-2570. https://doi.org/10.3892/mmr.2019.10516
MLA
Hou, C., Wang, D., Zhang, L."MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes ". Molecular Medicine Reports 20.3 (2019): 2563-2570.
Chicago
Hou, C., Wang, D., Zhang, L."MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes ". Molecular Medicine Reports 20, no. 3 (2019): 2563-2570. https://doi.org/10.3892/mmr.2019.10516