UA promotes epithelial‑mesenchymal transition in peritoneal mesothelial cells

  • Authors:
    • Chao‑Yang Duan
    • Jin Han
    • Chong‑Yu Zhang
    • Kunyi Wu
    • Yan Lin
  • View Affiliations

  • Published online on: July 9, 2019     https://doi.org/10.3892/mmr.2019.10476
  • Pages: 2396-2402
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long‑term peritoneal dialysis is often limited or interrupted due to the development and progression of peritoneal fibrosis. Accumulating evidence suggests that epithelial‑mesenchymal transition (EMT) is a major component of peritoneal injury associated with peritoneal fibrosis in the end stage of renal disease; however, at present, the underlying mechanisms remain unclear. Thus, in the present study, uric acid (UA)‑induced EMT of peritoneal mesothelial cells was investigated by western‑blot and immunofluorescence staining. The results revealed that peritoneal mesothelial cells stimulated with UA underwent EMT, as demonstrated by the decreased expression of epithelial markers (E‑cadherin) and an increased expression of mesenchymal markers (α‑smooth muscle actin and vimentin). Additionally, it was reported that UA could facilitate the progression of EMT of peritoneal mesothelial cells via EMT transcription pathways, including transforming growth factor‑β1/mothers against decapentaplegic homolog 3 and P38/mitogen‑activated protein kinase by western‑blot and reverse transcription semi‑quantitative polymerase chain reaction. The results of the present study suggest that UA could promote EMT and may contribute to peritoneal chronic disease. Furthermore, the data obtained suggest that the levels of blood UA may account for the development of EMT; thus, lowering the levels of blood UA may be beneficial to inhibit the occurrence and development of peritoneal fibrosis.

References

1 

Grams ME, Li L, Greene TH, Tin A, Sang Y, Kao WH, Lipkowitz MS, Wright JT, Chang AR, Astor BC and Appel LJ: Estimating time to ESRD using kidney failure risk equations: Results from the African American study of kidney disease and hypertension (AASK). Am J Kidney Dis. 65:394–402. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Jun M, Turin TC, Woodward M, Perkovic V, Lambers Heerspink HJ, Manns BJ, Tonelli M and Hemmelgarn BR: Assessing the validity of surrogate outcomes for ESRD: A meta-analysis. J Am Soc Nephrol. 26:2289–2302. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Purnell TS, Luo X, Cooper LA, Massie AB, Kucirka LM, Henderson ML, Gordon EJ, Crews DC, Boulware LE and Segev DL: Association of race and ethnicity with live donor kidney transplantation in the United States from 1995 to 2014. JAMA. 319:49–61. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Teixeira JP, Combs SA and Teitelbaum I: Peritoneal dialysis: Update on patient survival. Clin Nephrol. 83:1–10. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Weinhandl ED, Foley RN, Gilbertson DT, Arneson TJ, Snyder JJ and Collins AJ: Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol. 21:499–506. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Morinelli TA, Luttrell LM, Strungs EG and Ullian ME: Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol. 77:240–250. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Fernández-Perpén A, Pérez-Lozano ML, Bajo MA, Albar-Vizcaino P, Sandoval Correa P, del Peso G, Castro MJ, Aguilera A, Ossorio M, Peter ME, et al: Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 32:292–304. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Ueno T, Nakashima A, Doi S, Kawamoto T, Honda K, Yokoyama Y, Doi T, Higashi Y, Yorioka N, Kato Y, et al: Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int. 84:297–307. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Huh JY, Seo EY, Lee HB and Ha H: Glucose-based peritoneal dialysis solution suppresses adiponectin synthesis through oxidative stress in an experimental model of peritoneal dialysis. Perit Dial Int. 32:20–28. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Jasinge E, Kularatnam GAM, Dilanthi HW, Vidanapathirana DM, Jayasena KLSPKM, Chandrasiri NDPD, Indika NLR, Ratnayake PD, Gunasekara VN, Fairbanks LD and Stiburkova B: Uric acid, an important screening tool to detect inborn errors of metabolism: A case series. BMC Res Notes. 10:4542017. View Article : Google Scholar : PubMed/NCBI

11 

Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, Davos CH, Cicoira M, Shamim W, Kemp M, et al: Uric acid and survival in chronic heart failure: Validation and application in metabolic, functional, and hemodynamic staging. Circulation. 107:1991–1997. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Richette P and Bardin T: Gout. Lancet. 375:318–328. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Wakabayashi K, Hamada C, Kanda R, Nakano T, Io H, Horikoshi S and Tomino Y: Adipose-derived mesenchymal stem cells transplantation facilitate experimental peritoneal fibrosis repair by suppressing epithelial-mesenchymal transition. J Nephrol. 27:507–514. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Brodeur AC, Roberts-Pilgrim AM, Thompson KL, Franklin CL and Phillips CL: Transforming growth factor-β1/Smad3-independent epithelial-mesenchymal transition in type I collagen glomerulopathy. Int J Nephrol Renovasc Dis. 10:251–259. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Hipp S, Berg D, Ergin B, Schuster T, Hapfelmeier A, Walch A, Avril S, Schmalfeldt B, Höfler H and Becker KF: Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Arch. 457:705–713. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Ouanouki A, Lamy S and Annabi B: Periostin, a signal transduction intermediate in TGF-β-induced EMT in U-87MG human glioblastoma cells, and its inhibition by anthocyanidins. Oncotarget. 9:22023–22037. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Tennakoon AH, Izawa T, Kuwamura M and Yamate J: Pathogenesis of type 2 epithelial to mesenchymal transition (EMT) in renal and hepatic fibrosis. J Clin Med. 5:E42015. View Article : Google Scholar : PubMed/NCBI

18 

Liu RM and Gaston Pravia KA: Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 48:1–15. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER and Patel J: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 295:C1183–C1190. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R and Johnson RJ: A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 13:2888–2897. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Strippoli R, Moreno-Vicente R, Battistelli C, Cicchini C, Noce V, Amicone L, Marchetti A, Del Pozo MA and Tripodi M: Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int. 2016:35436782016. View Article : Google Scholar : PubMed/NCBI

22 

Li S, Lu J, Chen Y, Xiong N, Li L, Zhang J, Yang H, Wu C, Zeng H and Liu Y: MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol. 14:621–630. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA and Kelly MM: Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 16:425–436. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Mulder KM: Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev. 11:23–35. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Witte D, Otterbein H, Förster M, Giehl K, Zeiser R, Lehnert H and Ungefroren H: Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b. Sci Rep. 7:173132017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Duan, C., Han, J., Zhang, C., Wu, K., & Lin, Y. (2019). UA promotes epithelial‑mesenchymal transition in peritoneal mesothelial cells. Molecular Medicine Reports, 20, 2396-2402. https://doi.org/10.3892/mmr.2019.10476
MLA
Duan, C., Han, J., Zhang, C., Wu, K., Lin, Y."UA promotes epithelial‑mesenchymal transition in peritoneal mesothelial cells". Molecular Medicine Reports 20.3 (2019): 2396-2402.
Chicago
Duan, C., Han, J., Zhang, C., Wu, K., Lin, Y."UA promotes epithelial‑mesenchymal transition in peritoneal mesothelial cells". Molecular Medicine Reports 20, no. 3 (2019): 2396-2402. https://doi.org/10.3892/mmr.2019.10476