Open Access

Treatment for benign thyroid nodules with a combination of natural extracts

  • Authors:
    • Felician Stancioiu
    • Daniel Mihai
    • Georgios Z. Papadakis
    • Aristidis Tsatsakis
    • Demetrios A. Spandidos
    • Corin Badiu
  • View Affiliations

  • Published online on: July 1, 2019     https://doi.org/10.3892/mmr.2019.10453
  • Pages: 2332-2338
  • Copyright: © Stancioiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Benign thyroid nodules are among the most common endocrine disorders. Recent advances in diagnostic imaging and pathology have significantly contributed to better risk stratification of thyroid nodules. However, current treatment options, beyond surgical approaches are limited. The following placebo-controlled study presents, to the best of our knowledge, the first results of a non-invasive therapy for benign thyroid nodules. The efficacy and safety of a supplement containing spirulina, curcumin and Boswellia in euthyroid patients with benign thyroid nodules, was assessed by a 3 month, double-blind, placebo-controlled study which was completed by 34 patients. Patients with benign (FNAB documented) single thyroid nodules between 2 and 5 cm were evaluated in a prospective placebo-controlled cross-over trial, across 12 weeks (3 visits with six-week intervals). At each visit, the target thyroid nodule was recorded in two dimensions. In addition, plasma levels of thyroid stimulating hormone, free thyroxine and copper were assessed. The mean initial nodule area at V1 was 4.38±3.14 cm2, at V2 3.87±2.79 cm2, and at V3 3.53±2.84 cm2; P<0.04. Administration of the active substances (n=34) was followed by a mean area decrease of 0.611 cm2±0.933 (SD), while placebo administration (n=29) was followed by a mean decrease of 0.178 cm2±0.515 (SD), (P=0.027). The presented findings suggest that the combination of spirulina-curcumin-Βoswellia is effective in reducing the size of benign thyroid nodules. However, additional studies are needed in order to elucidate the exact mechanisms through which the suggested supplement facilitates a decrease in the size of benign thyroid nodules.

References

1 

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26:1–133. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Burman KD and Wartofsky L: CLINICAL PRACTICE. Thyroid Nodules. N Engl J Med. 373:2347–2356. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Bernardi S, Stacul F, Michelli A, Giudici F, Zuolo G, de Manzini N, Dobrinja C, Zanconati F and Fabris B: 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules. Endocrine. 57:402–408. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Cesareo R, Palermo A, Pasqualini V, Simeoni C, Casini A, Pelle G, Manfrini S, Campagna G and Cianni R: Efficacy and safety of a single radiofrequency ablation of solid benign non-functioning thyroid nodules. Arch Endocrinol Metab. 61:173–179. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Wu W, Gong X, Zhou Q and Chen X and Chen X: Ultrasound-guided percutaneous microwave ablation for solid benign thyroid nodules: Comparison of MWA versus control group. Int J Endocrinol. 2017:97240902017. View Article : Google Scholar : PubMed/NCBI

6 

Yue W, Wang S, Wang B, Xu Q, Yu S, Yonglin Z and Wang X: Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients. Eur J Radiol. 82:e11–e16. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Dobnig H and Amrein K: Monopolar radiofrequency ablation of thyroid nodules: A prospective Austrian single-center study. Thyroid. 28:472–480. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, Puxeddu E, Torlontano M, Tumino S, Attard M, et al: The natural history of benign thyroid nodules. JAMA. 313:926–935. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, Maurer MS, McIver B, Mullan BP, Oberg AL, et al: Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): Temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 26:879–885. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Twomey PJ, Viljoen A, House IM, Reynolds TM and Wierzbicki AS: Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin Chem. 51:1558–1559. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Habi b, M Ahsan B, Huntington T and Hasan MA: A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. In: FAO Fisheries and Aquaculture Circular No.1034. Food and Agriculture Organization of the United Nations; Rome, Italy: 2008, PubMed/NCBI

12 

Spolaore P, Joannis-Cassan C, Duran E and Isambert A: Commercial applications of microalgae. J Biosci Bioeng. 101:87–96. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Becker EW: Micro-algae as a source of protein. Biotechnol Adv. 25:207–210. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Kent M, Welladsen HM, Mangott A and Li Y: Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One. 10:e01189852015. View Article : Google Scholar : PubMed/NCBI

15 

Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L and Lo Muzio L: Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 10:1615–1623. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Tabrizi R, Vakili S, Akbari M, Mirhosseini N, Lankarani KB, Rahimi M, Mobini M, Jafarnejad S, Vahedpoor Z and Asemi Z: The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 33:252–262. 2019. View Article : Google Scholar

17 

Beghelli D, Isani G, Roncada P, Andreani G, Bistoni O, Bertocchi M, Lupidi G and Alunno A: Antioxidant and ex vivo immune system regulatory properties of Boswellia serrata extracts. Oxid Med Cell Longev. 2017:74680642017. View Article : Google Scholar : PubMed/NCBI

18 

Governa P, Marchi M, Cocetta V, De Leo B, Saunders PTK, Catanzaro D, Miraldi E, Montopoli M and Biagi M: Effects of Boswellia Serrata Roxb. and Curcuma longa L. in an in vitro intestinal inflammation model using immune cells and Caco-2. Pharmaceuticals (Basel). 11:E1262018. View Article : Google Scholar : PubMed/NCBI

19 

Kizhakkedath R: Clinical evaluation of a formulation containing Curcuma longa and Boswellia serrata extracts in the management of knee osteoarthritis. Mol Med Rep. 8:1542–1548. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Schenk H, Haralambus I, Leb G, Pickel H and Goebel R: The effect of oral contraceptives on levels of thyroid hormone, blood coagulation and ceruloplasmin. MMW Munch Med Wochenschr. 119:941–944. 1977.(In German). PubMed/NCBI

21 

Schreiber V and Pribyl T: Effect of interaction of oestrogen, testosterone and thyroid hormones on the serum ceruloplasmin level in rats. Physiol Bohemoslov (2). 129–137. 1977.

22 

Schreiber V, Pribyl T and Jahodová J: Reactions of hypothalamic ascorbic acid, serum ceruloplasmin and the adenohypophysis to oestradiol: Inhibition by L-thyroxine. Physiol Bohemoslov. 29:11–20. 1980.PubMed/NCBI

23 

Dumitriu L, Bartoc R, Ursu H, Purice M and Ionescu V: Significance of high levels of serum malonyl dialdehyde (MDA) and ceruloplasmin (CP) in hyper- and hypothyroidism. Endocrinologie. 26:35–38. 1988.PubMed/NCBI

24 

Tisato V, Gallo S, Melloni E, Celeghini C, Passaro A, Zauli G, Secchiero P, Bergamini C, Trentini A, Bonaccorsi G, et al: TRAIL and ceruloplasmin inverse correlation as a representative crosstalk between inflammation and oxidative stress. Mediators Inflamm. 2018:96295372018. View Article : Google Scholar : PubMed/NCBI

25 

Golenkina EA, Viryasova GM, Galkina SI, Gaponova TV, Sud'ina GF and Sokolov AV: Fine regulation of neutrophil oxidative status and apoptosis by ceruloplasmin and its derivatives. Cells. 7:E82018. View Article : Google Scholar : PubMed/NCBI

26 

Valenzise M, Porcaro F, Zirilli G, De Luca F, Cinquegrani M and Aversa T: Hypoceruloplasminemia: An unusual biochemical finding in a girl with Hashimoto's thyroiditis and severe hypothyroidism. Pediatr Med Chir. 40:2018, simplehttps://doi.org/10.4081/pmc.2018.179 View Article : Google Scholar : PubMed/NCBI

27 

Mittag J, Behrends T, Nordström K, Anselmo J, Vennström B and Schomburg L: Serum copper as a novel biomarker for resistance to thyroid hormone. Biochem J. 443:103–109. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Fitch CA, Song Y and Levenson CW: Developmental regulation of hepatic ceruloplasmin mRNA and serum activity by exogenous thyroxine and dexamethasone. Proc Soc Exp Biol Med. 221:27–31. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Kralik A, Kirchgessner M and Eder K: Concentrations of thyroid hormones in serum and activity of hepatic 5′ monodeiodinase in copper-deficient rats. Z Ernahrungswiss. 35:288–291. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Bastian TW, Lassi KC, Anderson GW and Prohaska JR: Maternal iron supplementation attenuates the impact of perinatal copper deficiency but does not eliminate hypotriiodothyroninemia nor impaired sensorimotor development. J Nutr Biochem. 22:1084–1090. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Song B: Immunohistochemical demonstration of epidermal growth factor receptor and ceruloplasmin in thyroid diseases. Acta Pathol Jpn. 41:336–343. 1991.PubMed/NCBI

32 

Kondi-Pafiti A, Smyrniotis V, Frangou M, Papayanopoulou A, Englezou M and Deligeorgi H: Immunohistochemical study of ceruloplasmin, lactoferrin and secretory component expression in neoplastic and non-neoplastic thyroid gland diseases. Acta Oncol. 39:753–756. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Vaideeswar P, Pandit AA, Khilnani PH and Powar HS: Differentiation of follicular adenoma and carcinoma of thyroid by immunohistochemical demonstration of ceruloplasmin. Indian J Pathol Microbiol. 37:165–169. 1994.PubMed/NCBI

34 

Wang Q, Shen Y, Ye B, Hu H, Fan C, Wang T, Zheng Y, Lv J, Ma Y and Xiang M: Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue. Oncol Rep. 40:3359–3369. 2018.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Stancioiu, F., Mihai, D., Papadakis, G.Z., Tsatsakis, A., Spandidos, D.A., & Badiu, C. (2019). Treatment for benign thyroid nodules with a combination of natural extracts. Molecular Medicine Reports, 20, 2332-2338. https://doi.org/10.3892/mmr.2019.10453
MLA
Stancioiu, F., Mihai, D., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Badiu, C."Treatment for benign thyroid nodules with a combination of natural extracts". Molecular Medicine Reports 20.3 (2019): 2332-2338.
Chicago
Stancioiu, F., Mihai, D., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Badiu, C."Treatment for benign thyroid nodules with a combination of natural extracts". Molecular Medicine Reports 20, no. 3 (2019): 2332-2338. https://doi.org/10.3892/mmr.2019.10453