Open Access

Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro

  • Authors:
    • Tao Fang
    • Yanjie Zhu
    • Anlan Xu
    • Yanli Zhang
    • Qingfa Wu
    • Guoying Huang
    • Wei Sheng
    • Mingwu Chen
  • View Affiliations

  • Published online on: July 9, 2019     https://doi.org/10.3892/mmr.2019.10481
  • Pages: 2325-2331
  • Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Congenital heart disease (CHD) is the most common type of developmental defect, with high rates of morbidity in infants. The transcription factor GATA‑binding factor 4 (GATA4) has been reported to serve a critical role in embryogenesis and cardiac development. Our previous study reported a heterozygous GATA4 c.1306C>T (p.H436Y) mutation in four Chinese infants with congenital heart defects. In the present study, functional analysis of the GATA4 H436Y mutation was performed in vitro. The functional effect of GATA4 mutation was compared with GATA4 wild‑type using a dual‑luciferase reporter assay system and immunofluorescence. Electrophoretic mobility‑shift assays were performed to explore the binding affinity of the mutated GATA4 to the heart and neural crest derivatives expressed 2 (HAND2) gene. The results revealed that the mutation had no effect on normal nuclear localization, but resulted in diminished GATA‑binding affinity to HAND2 and significantly decreased gene transcriptional activation. These results indicated that this GATA4 mutation may not influence cellular localization in transfected cells, but may affect the affinity of the GATA‑binding site on HAND2 and decrease transcriptional activity, thus suggesting that the GATA4 mutation may be associated with the pathogenesis of CHD.

References

1 

Zhao QM, Liu F, Wu L, Ma XJ, Niu C and Huang GY: Prevalence of congenital heart disease at live birth in China. J Pediatr. 204:53–58. 2019. View Article : Google Scholar : PubMed/NCBI

2 

van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ and Roos-Hesselink JW: Birth prevalence of congenital heart disease worldwide a systematic review and meta-analysis. J Am Coll Cardiol. 58:2241–2247. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Yu Z, Xi Y, Ding W, Han S, Cao L, Zhu C, Wang X and Guo X: Congenital heart disease in a Chinese hospital: Pre- and postnatal detection, incidence, clinical characteristics and outcomes. Pediatr Int. 53:1059–1065. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Miranović V: The incidence of congenital heart disease: Previous findings and perspectives. Srp Arh Celok Lek. 142:243–248. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Marian AJ: Congenital heart disease the remarkable journey from the ‘post-mortem room’ to adult clinics. Circ Res. 120:895–897. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Srivastava D and Olson EN: A genetic blueprint for cardiac development. Nature. 407:221–226. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, et al: GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat. 34:1662–1671. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Andersen TA, Troelsen Kde L and Larsen LA: Of mice and men: Molecular genetics of congenital heart disease. Cell Mol Life Sci. 71:1327–1352. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Wang X, Li P, Chen S, Xi L, Guo Y, Guo A and Sun K: Influence of genes and the environment in familial congenital heart defects. Mol Med Rep. 9:695–700. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, Zhang XL, Li RG, Xu YJ, Hou XM, et al: A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol. 114:1891–1895. 2014. View Article : Google Scholar : PubMed/NCBI

11 

McCulley DJ and Black BL: Transcription factor pathways and congenital heart disease. Curr Top Dev Biol. 100:253–277. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Dai YS, Cserjesi P, Markham BE and Molkentin JD: The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem. 277:24390–24398. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Molkentin JD, Kalvakolanu DV and Markham BE: Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 14:4947–4957. 1994. View Article : Google Scholar : PubMed/NCBI

14 

Pikkarainen S, Tokola H, Kerkelä R and Ruskoaho H: GATA transcription factors in the developing and adult heart. Cardiovasc Res. 63:196–207. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, Lucchesi PA, Pu WT, Srivastava D and Garg V: Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet. 8:e10026902012. View Article : Google Scholar : PubMed/NCBI

16 

Epstein JA and Parmacek MS: Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation. 112:592–597. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Zhang H, Chen M, Fang T, Zhang T and Ni W: Establishment and verification of a mouse model of Gata4 gene H435Y mutation. Nan Fang Yi Ke Da Xue Xue Bao. 38:1245–1249. 2018.(In Chinese). PubMed/NCBI

18 

Chen MW, Pang YS, Guo Y, Pan JH, Liu BL, Shen J and Liu TW: GATA4 mutations in Chinese patients with congenital cardiac septal defects. Pediatr Cardiol. 31:85–89. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Kaetzke A and Eschrich K: Simultaneous determination of different DNA sequences by mass spectrometric evaluation of Sanger sequencing reactions. Nucleic Acids Res. 30:e1172002. View Article : Google Scholar : PubMed/NCBI

20 

Seidman CE, Wong DW, Jarcho JA, Bloch KD and Seidman JG: Cis-acting sequences that modulate atrial natriuretic factor gene-expression. Proc Natl Acad Sci USA. 85:4104–4108. 1988. View Article : Google Scholar : PubMed/NCBI

21 

Sprenkle AB, Murray SF and Glembotski CC: Involvement of multiple cis-elements in basal-inducible and alpha-adrenergic agonist-inducible atrial-natriuretic-factor transcription-roles for serum response elements and an sp-1-like element. Circ Res. 77:1060–1069. 1995. View Article : Google Scholar : PubMed/NCBI

22 

McFadden DG, Charite J, Richardson JA, Srivastava D, Firulli AB and Olson EN: A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development. 127:5331–5341. 2000.PubMed/NCBI

23 

Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 424:443–447. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Wang E, Sun S, Qiao B, Duan W, Huang G, An Y, Xu S, Zheng Y, Su Z, Gu X, et al: Identification of functional mutations in GATA4 in patients with congenital heart disease. PLoS One. 8:e621382013. View Article : Google Scholar : PubMed/NCBI

25 

White RA, Dowler LL, Pasztor LM, Gatson LL, Adkison LR, Angeloni SV and Wilson DB: Assignment of the transcription factor gata4 gene to human-chromosome-8 and mouse chromosome-14-GATA4 is a candidate gene for ds (disorganization). Genomics. 27:20–26. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Zhang X, Wang J, Wang B, Chen S, Fu Q and Sun K: A novel missense mutation of GATA4 in a chinese family with congenital heart disease. PLoS One. 11:e01589042016. View Article : Google Scholar : PubMed/NCBI

27 

Chen J, Qi B, Zhao J, Liu W, Duan R and Zhang M: A novel mutation of GATA4 (K300T) associated with familial atrial septal defect. Gene. 575:473–477. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ, et al: Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 117:3198–3210. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Morrisey EE, Ip HS, Tang Z and Parmacek MS: GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. J Biol Chem. 272:8515–8524. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M and Bitar F: A novel mutation in the GATA4 gene in patients with tetralogy of fallot. Hum Mutat. 27:293–294. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Chen Y, Mao J, Sun Y, Zhang Q, Cheng HB, Yan WH, Choy KW and Li H: A novel mutation of GATA4 in a familial atrial septal defect. Clin Chim Acta. 411:1741–1745. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Moreau JLM, Kesteven S, Martin EMMA, Lau KS, Yam MX, O'Reilly VC, Del Monte-Nieto G, Baldini A, Feneley MP, Moon AM, et al: Gene-environment interaction impacts on heart development and embryo survival. Development. 146:dev1729572019. View Article : Google Scholar : PubMed/NCBI

33 

Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A and Dandara C: Genomics and epigenomics of congenital heart defects: Expert review and lessons learned in Africa. OMICS. 22:301–321. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fang, T., Zhu, Y., Xu, A., Zhang, Y., Wu, Q., Huang, G. ... Chen, M. (2019). Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro. Molecular Medicine Reports, 20, 2325-2331. https://doi.org/10.3892/mmr.2019.10481
MLA
Fang, T., Zhu, Y., Xu, A., Zhang, Y., Wu, Q., Huang, G., Sheng, W., Chen, M."Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro". Molecular Medicine Reports 20.3 (2019): 2325-2331.
Chicago
Fang, T., Zhu, Y., Xu, A., Zhang, Y., Wu, Q., Huang, G., Sheng, W., Chen, M."Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro". Molecular Medicine Reports 20, no. 3 (2019): 2325-2331. https://doi.org/10.3892/mmr.2019.10481