Open Access

Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis

  • Authors:
    • Lijie Zhang
    • Donghui Lu
    • Meiqin Liu
    • Mingjin Zhang
    • Quan Peng
  • View Affiliations

  • Published online on: July 3, 2019     https://doi.org/10.3892/mmr.2019.10463
  • Pages: 2316-2324
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Medullary thyroid carcinoma (MTC) is an endocrine tumor and comprises 5‑10% of all primary thyroid malignancies. However, the biomechanical contribution to the development and progression of MTC remains unclear. In this study, To discover the key microRNAs (miRNAs or miRs) and their potential roles in the tumorigenesis of MTC, the microarray datasets GSE97070, GSE40807 and GSE27155 were analyzed. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs (DEMs) and genes (DEGs) were accessed by R. Targets of DEMs and predicted using starBase, and functional and pathway enrichment analyses were performed using Metascape. A protein‑protein interaction (PPI) network and an analysis of modules were constructed using NetworkAnalyst. Finally, a network was constructed to show the regulatory association between transcription factors (TFs), DEMs and downstream genes. A total of 5 DEMs were found both in GSE97070 and GSE40807, including 3 upregulated DEMs and 2 downregulated DEMs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses from Metascape revealed that the target genes of upregulated DEMs were significantly enriched in adherens junction, kinase and protein binding, while the target genes of downregulated DEMs were mainly involved in non‑canonical Wnt signaling pathway and RNA transport. From the PPI network, 13 nodes were screened as hub genes. Pathway enrichment analysis revealed that the top 5 modules were mostly enriched in the neurotrophin signaling pathway, mRNA surveillance pathway and MAPK signaling pathway. In addition, the TF‑DEMs‑target gene and DEGs regulatory network revealed that 17 TFs regulated 2 miRNAs, including upregulated or downregulated DEMs, CREB1 regulated all upregulated DEMs, and TGFB1 was an activator of hsa‑miR‑199a‑3p and a repressor of hsa‑miR‑429. Taken together, the present study identified several miRNAs and potential biological mechanisms involved in the tumorigenesis of MTC. This study identified the key DEMs and potential mechanisms underlying the development of MTC, and provided a series of biomarkers and targets for the management of MTC.

References

1 

Mohammadi M and Hedayati M: A brief review on the molecular basis of medullary thyroid carcinoma. Cell J. 18:485–492. 2017.PubMed/NCBI

2 

Figlioli G, Landi S, Romei C, Elisei R and Gemignani F: Medullary thyroid carcinoma (MTC) and RET proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res. 752:36–44. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Sippel RS, Kunnimalaiyaan M and Chen H: Current management of medullary thyroid cancer. Oncologist. 13:539–547. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Milling RV, Grimm D, Krüger M, Grosse J, Kopp S, Bauer J, Infanger M and Wehland M: Pazopanib, cabozantinib, and vandetanib in the treatment of progressive medullary thyroidcancer with a special focus on the adverse effects on hypertension. Int J Mol Sci. 19(pii): E32582018. View Article : Google Scholar : PubMed/NCBI

5 

Fagin JA and Wells SA Jr: Biologic and Clinical perspectives on thyroid cancer. N Engl J Med. 375:1054–1067. 2016. View Article : Google Scholar : PubMed/NCBI

6 

American Thyroid Association Guidelines Task Force, ; Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, Moley JF, Pacini F, Ringel MD, Schlumberger M and Wells SA Jr: Medullary thyroid cancer: Management guidelines of the American Thyroid Association. Thyroid. 19:565–612. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, et al: Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 98:E364–E369. 2013. View Article : Google Scholar : PubMed/NCBI

8 

A T, F S, G P and M B: Genetic alterations in medullary thyroid cancer: Diagnostic and prognostic markers. Curr Genomics. 12:618–625. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, Agate L, Vivaldi A, Faviana P, Basolo F, et al: Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: A 10-year follow-up study. J Clin Endocrinol Metab. 93:682–687. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Pishkari S, Paryan M, Hashemi M, Baldini E and Mohammadi-Yeganeh S: The role of microRNAs in different types of thyroid carcinoma: A comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest. 41:269–283. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Shabani N, Razaviyan J, Paryan M, Tavangar SM, Azizi F, Mohammadi-Yeganeh S and Hedayati M: Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: miR-34a and miR-144 as promising overexpressed markers in MTC. Hum Pathol. 79:212–221. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, Robinson BG and Sidhu SB: MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res. 17:4772–4781. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, De Cecco L, Rizzetti MG, Zanframundo A, Aiello A, et al: Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer. 25:217–231. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Lassalle S, Zangari J, Popa A, Ilie M, Hofman V, Long E, Patey M, Tissier F, Belléannée G, Trouette H, et al: MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib. Oncotarget. 7:30461–30478. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, et al: Molecular classification of papillary thyroid carcinoma: Distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 24:6646–6656. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr, Vinco M, Misek DE, Sanders D, Zhu Z, et al: Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res. 12:1983–1993. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Li D, Hao X and Song Y: Identification of the key MicroRNAs and the miRNA-mRNA regulatory pathways in prostate cancer by bioinformatics methods. Biomed Res Int. 2018:62041282018.PubMed/NCBI

20 

Mou T, Zhu D, Wei X, Li T, Zheng D, Pu J, Guo Z and Wu Z: Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis. World J Surg Oncol. 15:632017. View Article : Google Scholar : PubMed/NCBI

21 

Li J, Qin Y and Zhang H: Identification of key miRNA-gene pairs in chronic lymphocytic leukemia through integrated analysis of mRNA and miRNA microarray. Oncol Lett. 15:361–367. 2018.PubMed/NCBI

22 

Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42 (Database Issue). D92–D97. 2014. View Article : Google Scholar

23 

Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1): D457–D462. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, et al: Meta- and orthogonal integration of influenza ‘OMICs’ data defines a role for UBR4 in virus budding. Cell Host Microbe. 18:723–735. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Xia J, Benner MJ and Hancock RE: NetworkAnalyst-integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res 42 (Web Server Issue). W167–W174. 2014. View Article : Google Scholar

26 

Xia J, Gill E and Hancock RE: NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 10:823–844. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Wang J, Lu M, Qiu C and Cui Q: TransmiR: A transcription factor-microRNA regulation database. Nucleic Acids Res 38 (Database Issue). D119–D122. 2010. View Article : Google Scholar

28 

Tong Z, Cui Q, Wang J and Zhou Y: TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 47(D1): D253–D258. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Scollo C, Baudin E, Travagli JP, Caillou B, Bellon N, Leboulleux S and Schlumberger M: Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. J Clin Endocrinol Metab. 88:2070–2075. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Griebeler ML, Gharib H and Thompson GB: Medullary thyroid carcinoma. Endocr Pract. 19:703–711. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Schlumberger M, Carlomagno F, Baudin E, Bidart JM and Santoro M: New therapeutic approaches to treat medullary thyroid carcinoma. Nat Clin Pract Endocrinol Metab. 4:22–32. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Conzo G, Polistena A, Calò PG, Bononi P, Gambardella C, Mauriello C, Tartaglia E, Avenia S, Sanguinetti A, Medas F, et al: Efficacy of combined treatment for anaplastic thyroid carcinoma: Results of a multinstitutional retrospective analysis. Int J Surg. 12 (Suppl 1):S178–S182. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Conzo G, Avenia N, Ansaldo GL, Calò P, De Palma M, Dobrinja C, Docimo G, Gambardella C, Grasso M, Lombardi CP, et al: Surgical treatment of thyroid follicular neoplasms: Results of a retrospective analysis of a large clinical series. Endocrine. 55:530–538. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Shi L, Zhao SM, Luo Y, Zhang AW, Wei LH, Xie ZY, Li YY and Ma W: MiR-375: A prospective regulator in medullary thyroid cancer based on microarray data and bioinformatics analyses. Pathol Res Pract. 213:1344–1354. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Galuppini F, Bertazza L, Barollo S, Cavedon E, Rugge M, Guzzardo V, Sacchi D, Watutantrige-Fernando S, Vianello F, Mian C and Pennelli G: MiR-375 and YAP1 expression profiling in medullary thyroid carcinoma and their correlation with clinical-pathological features and outcome. Virchows Arch. 47:651–658. 2017. View Article : Google Scholar

36 

Hudson J, Duncavage E, Tamburrino A, Salerno P, Xi L, Raffeld M, Moley J and Chernock RD: Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol. 95:62–67. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA and Lieu CH: Targeting the WNT signaling pathway in cancer therapeutics. Oncologist. 20:1189–1198. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Maliszewska A, Leandro-Garcia LJ, Castelblanco E, Macià A, de Cubas A, Goméz-López G, Inglada-Pérez L, Álvarez-Escolá C, De la Vega L, Letón R, et al: Differential gene expression of medullary thyroid carcinoma reveals specific markers associated with genetic conditions. Am J Pathol. 182:350–362. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Colak S and Ten Dijke P: Targeting TGF-β signaling in cancer. Trends Cancer. 3:56–71. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

43 

Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C, et al: A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer. 20:809–823. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kim HJ, Kim TH, Im J, Lee MS, et al: RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 48:714–722. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Zhang GY, Yang WH and Chen Z: Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells. Eur Rev Med Pharmacol Sci. 20:2028–2037. 2016.PubMed/NCBI

46 

Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT, Noda M, Loda M, Hunt JL and Ewen ME: Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet. 38:118–123. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Liu Z, Zhang J, Gao J and Li Y: MicroRNA-4728 mediated regulation of MAPK oncogenic signaling in papillary thyroid carcinoma. Saudi J Biol Sci. 25:986–990. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Pan J, Zhang L, Xu S, Cheng X, Yu H, Bao J and Lu R: Induction of apoptosis in human papillary-thyroid-carcinoma BCPAP cells by diallyl trisulfide through activation of the MAPK signaling pathway. J Agric Food Chem. 66:5871–5878. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT and Chang JG: Detection of molecular alterations in taiwanese patients with medullary thyroid cancer using whole-exome sequencing. Endocr Pathol. 29:324–331. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L and Cheng X: DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep. 40:1203–1222. 2018.PubMed/NCBI

51 

Fang J, Ye Z, Gu F, Yan M, Lin Q, Lin J, Wang Z, Xu Y and Wang Y: DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol Lett. 16:1869–1875. 2018.PubMed/NCBI

52 

Zhang Y, Zhang Y, Chen M, Liu C and Xiang C: DUSP1 is involved in the progression of small cell carcinoma of the prostate. Saudi J Biol Sci. 25:858–862. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, Zhang X, Oka M and Nakamura K: Differential expression of up-regulated cofilin-1 and down-regulated cofilin-2 characteristic of pancreatic cancer tissues. Oncol Rep. 26:1595–1599. 2011.PubMed/NCBI

54 

Yu BB, Lin GX, Li L, Qu S, Liang ZG, Chen KH, Zhou L, Lu QT, Sun YC and Zhu XD: Cofilin-2 acts as a marker for predicting radiotherapy response and is a potential therapeutic target in nasopharyngeal carcinoma. Med Sci Monit. 24:2317–2329. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Liu J, Li H, Shen S, Sun L, Yuan Y and Xing C: Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J Cancer. 9:1754–1764. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Khiroya H, Moore JS, Ahmad N, Kay J, Woolnough K, Langman G, Ismail I, Naidu B, Tselepis C and Turner AM: IRP2 as a potential modulator of cell proliferation, apoptosis and prognosis in nonsmall cell lung cancer. Eur Respir J. 49(pii): 16007112017. View Article : Google Scholar : PubMed/NCBI

57 

Siqingaow a, Sekar S, Gopalakrishnan V and Taghibiglou C: Sterol regulatory element-binding protein 1 inhibitors decrease pancreatic cancer cell viability and proliferation. Biochem Biophys Res Commun. 488:136–140. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, L., Lu, D., Liu, M., Zhang, M., & Peng, Q. (2019). Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Molecular Medicine Reports, 20, 2316-2324. https://doi.org/10.3892/mmr.2019.10463
MLA
Zhang, L., Lu, D., Liu, M., Zhang, M., Peng, Q."Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis". Molecular Medicine Reports 20.3 (2019): 2316-2324.
Chicago
Zhang, L., Lu, D., Liu, M., Zhang, M., Peng, Q."Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis". Molecular Medicine Reports 20, no. 3 (2019): 2316-2324. https://doi.org/10.3892/mmr.2019.10463