Open Access

Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer

  • Authors:
    • Yun Mao
    • Peng Xue
    • Linlu Li
    • Pengpeng Xu
    • Yafang Cai
    • Xuelei Chu
    • Pengyuan Jiang
    • Shijie Zhu
  • View Affiliations

  • Published online on: June 28, 2019     https://doi.org/10.3892/mmr.2019.10441
  • Pages: 2199-2208
  • Copyright: © Mao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Small‑cell lung cancer (SCLC) is a type of lung cancer with early metastasis, and high recurrence and mortality rates. The molecular mechanism is still unclear and further research is required. The aim of the present study was to examine the pathogenesis and potential molecular markers of SCLC by comparing the differential expression of mRNA and microRNA (miRNA) between SCLC tissue and normal lung tissue. A transcriptome sequencing dataset (GSE6044) and a non‑coding RNA sequence dataset (GSE19945) were downloaded from the Gene Expression Omnibus (GEO) database. In total, 451 differentially expressed genes (DEGs) and 134 differentially expressed miRNAs (DEMs) were identified using the R limma software package and the GEO2R tool of the GEO, respectively. The Gene Ontology function was significantly enriched for 28 terms, and the Kyoto Encyclopedia of Genes and Genomes database had 19 enrichment pathways, mainly related to ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis mismatch repair’. The protein‑protein interaction network was constructed using Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities in SCLC. The 1,402 miRNA‑gene pairs encompassed 602 target genes of the DEMs using miRNAWalk, which is a bioinformatics platform that predicts DEM target genes and miRNA‑gene pairs. There were 19 overlapping genes regulated by 32 miRNAs between target genes of the DEMs and DEGs. Bioinformatics analysis may help to better understand the role of DEGs, DEMs and miRNA‑gene pairs in cell proliferation and signal transduction. The related hub genes may be used as biomarkers for the diagnosis and prognosis of SCLC, and as potential drug targets.

References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Xie D, Marks R, Zhang M, Jiang G, Jatoi A, Garces YI, Mansfield A, Molina J and Yang P: Nomograms predict overall survival for patients with small-cell lung cancer incorporating pretreatment peripheral blood markers. J Thorac Oncol. 10:1213–1220. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Waqar SN and Morgensztern D: Treatment advances in small cell lung cancer (SCLC). Pharmacol Ther. 180:16–23. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F and Rosell R: Cellular and molecular biology of small cell lung cancer: An overview. Transl Lung Cancer Res. 5:2–15. 2016.PubMed/NCBI

5 

Sundaresan V, Lin VT, Liang F, Kaye FJ, Kawabata-Iwakawa R, Shiraishi K, Kohno T, Yokota J and Zhou L: Significantly mutated genes and regulatory pathways in SCLC-a meta-analysis. Cancer Genet. 216-217:20–28. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Udagawa H, Umemura S, Murakami I, Mimaki S, Makinoshima H, Ishii G, Miyoshi T, Kirita K, Matsumoto S, Yoh K, et al: Genetic profiling-based prognostic prediction of patients with advanced small-cell lung cancer in large scale analysis. Lung Cancer. 126:182–188. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Sakre N, Wildey G, Behtaj M, Kresak A, Yang M, Fu P and Dowlati A: RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget. 8:5992–6002. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Sharma SK, Chintala NK, Vadrevu SK, Patel J, Karbowniczek M and Markiewski MM: Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 194:5529–5538. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Poirier JT, Gardner EE, Connis N, Moreira AL, De Stanchina E, Hann CL and Rudin CM: DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 34:5869–5878. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Development. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Catto JW, Antonio A, Bjartell AS, De Vere White R, Evans CP, Fussel S, Hamdy FC, Kallioniemi O, Mengual L, Schlomm T and Visakorpi T: MicroRNA in prostate, bladder, and kidney cancer: A systematic review. Eur Urol. 59:671–681. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

13 

Zhao Z, Liu J, Wang C, Wang Y, Jiang Y and Guo M: MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol. 7:7726–7734. 2014.PubMed/NCBI

14 

Grimolizzi F, Monaco F, Leoni F, Bracci M, Staffolani S, Bersaglieri C, Gaetani S, Valentino M, Amati M, Rubini C, et al: Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep. 7:152772017. View Article : Google Scholar : PubMed/NCBI

15 

Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, Gounon P, Lacas-Gervais S, Noel A, Pouyssegur J, et al: MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 4:e5442013. View Article : Google Scholar : PubMed/NCBI

16 

Rohrbeck A, Neukirchen J, Rosskopf M, Pardillos GG, Geddert H, Schwalen A, Gabbert HE, von Haeseler A, Pitschke G, Schott M, et al: Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers. J Transl Med. 6:692008. View Article : Google Scholar : PubMed/NCBI

17 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Diboun I, Wernisch L, Orengo CA and Koltzenburg M: Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI

19 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

20 

Assenov Y, Ramirez F, Schelhorn SE, Lengauer T and Albrecht M: Computing topological parameters of biological networks. Bioinformatics. 24:282–284. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Dweep H, Sticht C, Pandey P and Gretz N: miRWalk-Database: Prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Ma N and Gao X: β-Actin is predicted as one of the potential targets of miR-145: Choose internal control gene in verification of microRNA target. Carcinogenesis. 34:2362013. View Article : Google Scholar : PubMed/NCBI

23 

Wang X: miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA. 14:1012–1017. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Koinis F, Kotsakis A and Georgoulias V: Small cell lung cancer (SCLC): No treatment advances in recent years. Transl Lung Cancer Res. 5:39–50. 2016.PubMed/NCBI

25 

Travis WD: Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod Pathol. 25 (Suppl 1):S18–S30. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Issaeva N: p53 signaling in cancers. Cancers (Basel). 11:E3322019. View Article : Google Scholar : PubMed/NCBI

27 

Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR and Mak TW: Targeting mitosis in cancer: Emerging strategies. Mol Cell. 60:524–536. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Penna LS, Henriques JAP and Bonatto D: Anti-mitotic agents: Are they emerging molecules for cancer treatment? Pharmacol Ther. 173:67–82. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Warkentin MT, Morris D, Bebb G and Brenner DR: The role of DNA repair capacity on lung cancer risk in never-smokers: A systematic review of epidemiologic studies. Cancer Treat Res Commun. 13:13–24. 2017. View Article : Google Scholar

30 

Jeggo PA, Pearl LH and Carr AM: DNA repair, genome stability and cancer: A historical perspective. Nat Rev Cancer. 16:35–42. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Reis ES, Mastellos DC, Ricklin D, Mantovani A and Lambris JD: Complement in cancer: Untangling an intricate relationship. Nat Rev Immunol. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Afshar-Kharghan V: The role of the complement system in cancer. J Clin Invest. 127:780–789. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Ajona D, Ortiz-Espinosa S, Moreno H, Lozano T, Pajares MJ, Agorreta J, Bertolo C, Lasarte JJ, Vicent S, Hoehlig K, et al: A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7:694–703. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Wen P, Chidanguro T, Shi Z, Gu H, Wang N, Wang T, Li Y and Gao J: Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Mol Med Rep. 18:1538–1550. 2018.PubMed/NCBI

35 

Neubauer E, Wirtz RM, Kaemmerer D, Athelogou M, Schmidt L, Sanger J and Lupp A: Comparative evaluation of three proliferation markers, Ki-67, TOP2A, and RacGAP1, in bronchopulmonary neuroendocrine neoplasms: Issues and prospects. Oncotarget. 7:41959–41973. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EK, Sun LL, Pang YH, Leow YN, Malusay SR, et al: Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 7:117022016. View Article : Google Scholar : PubMed/NCBI

37 

Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC and Tsichlis PN: FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 43:285–298. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Zhang JG, Guo JF, Liu DL, Liu Q and Wang JJ: MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol. 6:671–678. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Hu J, Wu C, Zhao X and Liu C: The prognostic value of decreased miR-101 in various cancers: A meta-analysis of 12 studies. Onco Targets Ther. 10:3709–3718. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Castillo A, Morse HC III, Godfrey VL, Naeem R and Justice MJ: Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 67:10138–10147. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Karunagaran S, Subhashchandrabose S, Lee KW and Meganathan C: Investigation on the isoform selectivity of novel kinesin-like protein 1 (KIF11) inhibitor using chemical feature based pharmacophore, molecular docking, and quantum mechanical studies. Comput Biol Chem. 61:47–61. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Demes M, Aszyk C, Bartsch H, Schirren J and Fisseler-Eckhoff A: Differential miRNA-expression as an adjunctive diagnostic tool in neuroendocrine tumors of the lung. Cancers (Basel). 8:E382016. View Article : Google Scholar : PubMed/NCBI

43 

Gao W, Xu J, Liu L, Shen H, Zeng H and Shu Y: A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother. 66:21–28. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al: MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 109:E2110–E2116. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Florczuk M, Szpechcinski A and Chorostowska-Wynimko J: miRNAs as biomarkers and therapeutic targets in non-small cell lung cancer: Current perspectives. Targeted Oncol. 12:179–200. 2017. View Article : Google Scholar

46 

Fujii K, Miyata Y, Takahashi I, Koizumi H, Saji H, Hoshikawa M, Takagi M, Nishimura T and Nakamura H: Differential proteomic analysis between small cell lung carcinoma (SCLC) and pulmonary carcinoid tumors reveals molecular signatures for malignancy in lung cancer. Proteomics Clin Appl. 12:e18000152018. View Article : Google Scholar : PubMed/NCBI

47 

Levallet G, Dubois F, Fouret P, Antoine M, Brosseau S, Bergot E, Beau-Faller M, Gounant V, Brambilla E, Debieuvre D, et al: MSH2/BRCA1 expression as a DNA-repair signature predicting survival in early-stage lung cancer patients from the IFCT-0002 Phase 3 trial. Oncotarget. 8:4313–4329. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Bauerschmidt C, Arrichiello C, Burdak-Rothkamm S, Woodcock M, Hill MA, Stevens DL and Rothkamm K: Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38:477–487. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Urban E, Nagarkar-Jaiswal S, Lehner CF and Heidmann SK: The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLoS Genet. 10:e10045402014. View Article : Google Scholar : PubMed/NCBI

50 

Xu H, Yan Y, Deb S, Rangasamy D, Germann M, Malaterre J, Eder NC, Ward RL, Hawkins NJ, Tothill RW, et al: Cohesin Rad21 mediates loss of heterozygosity and is upregulated via wnt promoting transcriptional dysregulation in gastrointestinal tumors. Cell Rep. 9:1781–1797. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Yan M, Xu H, Waddell N, Shield-Artin K, Haviv I, kConFab authors, McKay MJ and Fox SB: Enhanced RAD21 cohesin expression confers poor prognosis in BRCA2 and BRCAX, but not BRCA1 familial breast cancers. Breast Cancer Res. 14:R692012. View Article : Google Scholar : PubMed/NCBI

52 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA. 101:9309–9314. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, Bowles B and Weiss GJ: MicroRNA 92a-2*: A biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol. 5:1273–1278. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Bi J, Zeng X, Zhao L, Wei Q, Yu L, Wang X, Yu Z, Cao Y, Shan F and Wei M: miR-181a induces macrophage polarized to M2 phenotype and promotes M2 macrophage-mediated tumor cell metastasis by targeting KLF6 and C/EBPalpha. Mol Ther Nucleic Acids. 5:e3682016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 20 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Mao, Y., Xue, P., Li, L., Xu, P., Cai, Y., Chu, X. ... Zhu, S. (2019). Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Molecular Medicine Reports, 20, 2199-2208. https://doi.org/10.3892/mmr.2019.10441
MLA
Mao, Y., Xue, P., Li, L., Xu, P., Cai, Y., Chu, X., Jiang, P., Zhu, S."Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer". Molecular Medicine Reports 20.3 (2019): 2199-2208.
Chicago
Mao, Y., Xue, P., Li, L., Xu, P., Cai, Y., Chu, X., Jiang, P., Zhu, S."Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer". Molecular Medicine Reports 20, no. 3 (2019): 2199-2208. https://doi.org/10.3892/mmr.2019.10441