Open Access

Identification of key candidate genes involved in melanoma metastasis

  • Authors:
    • Jia Chen
    • Fei Wu
    • Yu Shi
    • Degang Yang
    • Mingyuan Xu
    • Yongxian Lai
    • Yeqiang Liu
  • View Affiliations

  • Published online on: May 30, 2019     https://doi.org/10.3892/mmr.2019.10314
  • Pages: 903-914
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Metastasis is the most lethal stage of cancer progression. The present study aimed to investigate the underlying molecular mechanisms of melanoma metastasis using bioinformatics. Using the microarray dataset GSE8401 from the Gene Expression Omnibus database, which included 52 biopsy specimens from patients with melanoma metastasis and 31 biopsy specimens from patients with primary melanoma, differentially expressed genes (DEGs) were identified, subsequent to data preprocessing with the affy package, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein‑protein interaction (PPI) network was constructed. Mutated genes were analyzed with 80 mutated cases with melanoma from The Cancer Genome Atlas. The overall survival of key candidate DEGs, which were within a filtering of degree >30 criteria in the PPI network and involved three or more KEGG signaling pathways, and genes with a high mutation frequency were delineated. The expression analysis of key candidate DEGs, mutant genes and their associated genes were performed on UALCAN. Of the 1,187 DEGs obtained, 505 were upregulated and 682 were downregulated. ‘Extracellular exosome’ processes, the ‘amoebiasis’ pathway, the ‘ECM‑receptor interaction’ pathway and the ‘focal adhesion’ signaling pathway were significantly enriched and identified as important processes or signaling pathways. The overall survival analysis of phosphoinositide‑3‑kinase regulator subunit 3 (PIK3R3), centromere protein M (CENPM), aurora kinase A (AURKA), laminin subunit α 1 (LAMA1), proliferating cell nuclear antigen (PCNA), adenylate cyclase 1 (ADCY1), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), NDC80 kinetochore complex component (NDC80) and protein kinase C α (PRKCA) in DEGs was statistically significant. Mutation gene analysis identified that BRCA1‑associated protein 1 (BAP1) had a higher mutation frequency and survival analysis, and its associated genes in the BAP1‑associated PPI network, including ASXL transcriptional regulator 1 (ASXL1), proteasome 26S subunit, non‑ATPase 3 (PSMD3), proteasome 26S subunit, non ATPase 11 (PSMD11) and ubiquitin C (UBC), were statistically significantly associated with the overall survival of patients with melanoma. The expression levels of PRKCA, BUB1, BAP1 and ASXL1 were significantly different between primary melanoma and metastatic melanoma. Based on the present study, ‘extracellular exosome’ processes, ‘amoebiasis’ pathways, ‘ECM‑receptor interaction’ pathways and ‘focal adhesion’ signaling pathways may be important in the formation of metastases from melanoma. The involved genes, including PIK3R3, CENPM, AURKA, LAMA1, PCNA, ADCY1, BUB1, NDC80 and PRKCA, and mutation associated genes, including BAP1, ASXL1, PSMD3, PSMD11 and UBC, may serve important roles in metastases of melanoma.

References

1 

Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N and Ascierto PA: Main roads to melanoma. J Transl Med. 7:862009. View Article : Google Scholar : PubMed/NCBI

2 

Pessina F, Navarria P, Tomatis S, Cozzi L, Franzese C, Di Guardo L, Ascolese AM, Reggiori G, Franceschini D, Del Vecchio M, et al: Outcome evaluation of patients with limited brain metastasis from malignant melanoma, treated with surgery, radiation therapy, and targeted therapy. World Neurosurg. 105:184–190. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Guo Y, Bao Y, Ma M and Yang W: Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 18:E7222017. View Article : Google Scholar : PubMed/NCBI

5 

Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP and Hynes RO: Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res. 6:760–769. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Edgar R, Domrachev M and Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Gautier L, Cope L, Bolstad BM and Irizarry RA: affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. simplehttps://doi.org/10.2202/1544-6115.1027

9 

Hulsegge I, Kommadath A and Smits MA: Globaltest and GOEAST: Two different approaches for Gene Ontology analysis. BMC Proc. 3 (Suppl 4):S102009. View Article : Google Scholar : PubMed/NCBI

10 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al The Gene Ontology Consortium, : Gene ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and Galon J: ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Bindea G, Galon J and Mlecnik B: CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 29:661–663. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Scardoni G, Petterlini M and Laudanna C: Analyzing biological network parameters with CentiScaPe. Bioinformatics. 25:2857–2859. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI

18 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Guan J, Gupta R and Filipp FV: Cancer systems biology of TCGA SKCM: Efficient detection of genomic drivers in melanoma. Sci Rep. 5:78572015. View Article : Google Scholar : PubMed/NCBI

20 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45 (W1). W98–W102. 2017. View Article : Google Scholar

21 

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and Varambally S: UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 19:649–658. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Chang X, Zhang H, Lian S and Zhu W: miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochem Biophys Res Commun. 475:251–256. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Krasagakis K, Lindschau C, Fimmel S, Eberle J, Quass P, Haller H and Orfanos CE: Proliferation of human melanoma cells is under tight control of protein kinase C alpha. J Cell Physiol. 199:381–387. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Lahn MM and Sundell KL: The role of protein kinase C-alpha (PKC-alpha) in melanoma. Melanoma Res. 14:85–89. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Kabbarah O, Nogueira C, Feng B, Nazarian RM, Bosenberg M, Wu M, Scott KL, Kwong LN, Xiao Y, Cordon-Cardo C, et al: Integrative genome comparison of primary and metastatic melanomas. PLoS One. 5:e107702010. View Article : Google Scholar : PubMed/NCBI

26 

Hua Y, Ma X, Liu X, Yuan X, Qin H and Zhang X: Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS. 125:93–100. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Meng X, Chen X, Lu P, Ma W, Yue D, Song L and Fan Q: MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 473:821–827. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Fernandes H, D'Souza CR, Swethadri GK and Naik CN: Ameboma of the colon with amebic liver abscess mimicking metastatic colon cancer. Indian J Pathol Microbiol. 52:228–230. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Ayari H, Rebii S, Ghariani W, Daghfous A, Hasni R, Rehaiem R, Rezgui-Marhoul L and Zoghlami A: Colonic amoebiasis simulating a cecal tumor: Case report. Med Sante Trop. 23:274–275. 2013.(In French). PubMed/NCBI

30 

Moorchung N, Singh V, Srinivas V, Jaiswal SS and Singh G: Caecal amebic colitis mimicking obstructing right sided colonic carcinoma with liver metastases: A rare case. J Cancer Res Ther. 10:440–442. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Grosse A: Diagnosis of colonic amebiasis and coexisting signet-ring cell carcinoma in intestinal biopsy. World J Gastroenterol. 22:8234–8241. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Slominski A, Kim TK, Brożyna AA, Janjetovic Z, Brooks DL, Schwab LP, Skobowiat C, Jóźwicki W and Seagroves TN: The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys. 563:79–93. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Lewis TB, Robison JE, Bastien R, Milash B, Boucher K, Samlowski WE, Leachman SA, Dirk Noyes R, Wittwer CT, Perreard L and Bernard PS: Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction. Cancer. 104:1678–1686. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI

35 

Singh CK, George J, Nihal M, Sabat G, Kumar R and Ahmad N: Novel downstream molecular targets of SIRT1 in melanoma: A quantitative proteomics approach. Oncotarget. 5:1987–1999. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Puig-Butille JA, Vinyals A, Ferreres JR, Aguilera P, Cabré E, Tell-Martí G, Marcoval J, Mateo F, Palomero L, Badenas C, et al: AURKA Overexpression Is Driven by FOXM1 and MAPK/ERK Activation in Melanoma Cells Harboring BRAF or NRAS Mutations: Impact on Melanoma Prognosis and Therapy. J Invest Dermatol. 137:1297–1310. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Quan L, Shi J, Tian Y, Zhang Q, Zhang Y, Zhang Y, Hui Q and Tao K: Identification of potential therapeutic targets for melanoma using gene expression analysis. Neoplasma. 62:733–739. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Meng QC, Wang HC, Song ZL, Shan ZZ, Yuan Z, Zheng Q and Huang XY: Overexpression of NDC80 is correlated with prognosis of pancreatic cancer and regulates cell proliferation. Am J Cancer Res. 5:1730–1740. 2015.PubMed/NCBI

39 

Qu Y, Li J, Cai Q and Liu B: Hec1/Ndc80 is overexpressed in human gastric cancer and regulates cell growth. J Gastroenterol. 49:408–418. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ. 24:212–224. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Yan X, Huang L, Liu L, Qin H and Song Z: Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med. 7:420–432. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Ahonen LJ, Kallio MJ, Daum JR, Bolton M, Manke IA, Yaffe MB, Stukenberg PT and Gorbsky GJ: Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol. 15:1078–1089. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Li Z and Kong C: Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer. 17:8612017. View Article : Google Scholar : PubMed/NCBI

44 

Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, et al: MicroRNA-193a-3p and −5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene. 34:413–423. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Cao G, Dong W, Meng X, Liu H, Liao H and Liu S: MiR-511 inhibits growth and metastasis of human hepatocellular carcinoma cells by targeting PIK3R3. Tumour Biol. 36:4453–4459. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Klahan S, Wu MS, Hsi E, Huang CC, Hou MF and Chang WC: Computational analysis of mRNA expression profiles identifies the ITG family and PIK3R3 as crucial genes for regulating triple negative breast cancer cell migration. BioMed Res Int. 2014:5365912014. View Article : Google Scholar : PubMed/NCBI

47 

Liu K, Li X, Cao Y, Ge Y, Wang J and Shi B: MiR-132 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting PIK3R3. Int J Oncol. 47:1585–1593. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Zhu Y, Zhao H, Rao M and Xu S: MicroRNA-365 inhibits proliferation, migration and invasion of glioma by targeting PIK3R3. Oncol Rep. 37:2185–2192. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Wang G, Yang X, Li C, Cao X, Luo X and Hu J: PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. Mol Cancer Ther. 13:1837–1847. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F and Jiménez A: Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol. 11:688–700. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Yang Q, Ou C, Liu M, Xiao W, Wen C and Sun F: NRAGE promotes cell proliferation by stabilizing PCNA in a ubiquitin-proteasome pathway in esophageal carcinomas. Carcinogenesis. 35:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Kadariya Y, Cheung M, Xu J, Pei J, Sementino E, Menges CW, Cai KQ, Rauscher FJ, Klein-Szanto AJ and Testa JR: Bap1 Is a bona fide tumor suppressor: Genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res. 76:2836–2844. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS, Kirkpatrick DS, Pham VC, Lill JR, Bakalarski CE, et al: Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 337:1541–1546. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, Kurtenbach S and Harbour JW: Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun. 9:1162018. View Article : Google Scholar : PubMed/NCBI

55 

Smit KN, van Poppelen NM, Vaarwater J, Verdijk R, van Marion R, Kalirai H, Coupland SE, Thornton S, Farquhar N, Dubbink HJ, et al: Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod Pathol. 31:763–771. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Pitcovski J, Shahar E, Aizenshtein E and Gorodetsky R: Melanoma antigens and related immunological markers. Crit Rev Oncol Hematol. 115:36–49. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Garfield EM, Walton KE, Quan VL, VandenBoom T, Zhang B, Kong BY, Isales MC, Panah E, Kim G and Gerami P: Histomorphologic spectrum of germline-related and sporadic BAP1-inactivated melanocytic tumors. J Am Acad Dermatol. 79:525–534. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Tetzlaff MT, Torres-Cabala CA, Pattanaprichakul P, Rapini RP, Prieto VG and Curry JL: Emerging clinical applications of selected biomarkers in melanoma. Clin Cosmet Investig Dermatol. 8:35–46. 2015.PubMed/NCBI

59 

Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM, Lähdesmäki H and Rao A: Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 6:73072015. View Article : Google Scholar : PubMed/NCBI

60 

Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M and Murty VV: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: Potential role in progression. Genes Chromosomes Cancer. 47:755–765. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Katoh M: Functional and cancer genomics of ASXL family members. Br J Cancer. 109:299–306. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Katoh M: Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: A convergence of proteomics and epigenetics for translational medicine. Expert Rev Proteomics. 12:317–328. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Sahlberg KK, Hongisto V, Edgren H, Mäkelä R, Hellström K, Due EU, Moen Vollan HK, Sahlberg N, Wolf M, Børresen-Dale AL, et al: The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells. Mol Oncol. 7:392–401. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Patel VN, Gokulrangan G, Chowdhury SA, Chen Y, Sloan AE, Koyutürk M, Barnholtz-Sloan J and Chance MR: Network signatures of survival in glioblastoma multiforme. PLOS Comput Biol. 9:e10032372013. View Article : Google Scholar : PubMed/NCBI

65 

Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E and Yang H: Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat. 104:21–30. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Qi T, Zhang W, Luan Y, Kong F, Xu D, Cheng G and Wang Y: Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells. Mol Cell Proteomics. 13:49–62. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 20 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, J., Wu, F., Shi, Y., Yang, D., Xu, M., Lai, Y., & Liu, Y. (2019). Identification of key candidate genes involved in melanoma metastasis. Molecular Medicine Reports, 20, 903-914. https://doi.org/10.3892/mmr.2019.10314
MLA
Chen, J., Wu, F., Shi, Y., Yang, D., Xu, M., Lai, Y., Liu, Y."Identification of key candidate genes involved in melanoma metastasis". Molecular Medicine Reports 20.2 (2019): 903-914.
Chicago
Chen, J., Wu, F., Shi, Y., Yang, D., Xu, M., Lai, Y., Liu, Y."Identification of key candidate genes involved in melanoma metastasis". Molecular Medicine Reports 20, no. 2 (2019): 903-914. https://doi.org/10.3892/mmr.2019.10314