CD47 deficiency protects cardiomyocytes against hypoxia/reoxygenation injury by rescuing autophagic clearance

  • Authors:
    • Yong Li
    • Kun Zhao
    • Pengyu Zong
    • Heling Fu
    • Yuan Zheng
    • Dan Bao
    • Yuan Yin
    • Qin Chen
    • Lu Lu
    • Youjin Dai
    • Daorong Hou
    • Xiangqing Kong
  • View Affiliations

  • Published online on: April 25, 2019     https://doi.org/10.3892/mmr.2019.10199
  • Pages: 5453-5463
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

To assess the effect of cluster of differentiation (CD47) downregulation on autophagy in hypoxia/reoxygenation (H/R)‑treated H9c2 cardiomyocytes. H9c2 cells were maintained in normoxic conditions (95% air, 5% CO2, 37˚C) without CD47 antibodies, Si‑CD47 or chloroquine (CQ) treatment; H9c2 cells in the H/R group were subjected to 24 h of hypoxia (1% O2, 94% N2, 5% CO2, 37˚C) followed by 12 h of reoxygenation (95% air, 5% CO2, 37˚C). All assays were controlled, triplicated and repeated on three separately initiated cultures. The biochemical parameters in the medium supernatant were measured to evaluate the oxidative stress in cardiomyocytes. The Annexin V‑fluorescein isothiocyanate assay was used to detect the apoptotic rate in the H9c2 cells. Transmission electron microscope, immunofluorescent staining and western blot analysis were performed to detect the effect of the CD47 antibody on autophagic flux in H/R‑treated H9c2 cardiomyocytes. The cardiomyocytic oxidative stress and apoptotic rate decreased and autophagic clearance increased after CD47 downregulation. H/R triggered cell autophagy, autophagosome accumulation and apoptosis in H9c2 cell lines. However, these effects can be attenuated by CD47 downregulation. This study demonstrates its clinical implications in ischemia/reperfusion injury treatment.

References

1 

Keeley EC, Boura JA and Grines CL: Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet. 361:13–21. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Yellon DM and Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Przyklenk K, Dong Y, Undyala VV and Whittaker P: Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res. 94:197–205. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Jennings RB: Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res. 113:428–438. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Verma S, Fedak PW, Weisel RD, Butany J, Rao V, Maitland A, Li RK, Dhillon B and Yau TM: Fundamentals of reperfusion injury for the clinical cardiologist. Circulation. 105:2332–2336. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Zhang Y and Ren J: Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation. 129:1088–1091. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Ong SB and Gustafsson AB: New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res. 94:190–196. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Zeng M, Wei X, Wu Z, Li W, Li B, Zhen Y, Chen J, Wang P and Fei Y: NF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun. 436:180–185. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Wagner C, Tillack D, Simonis G, Strasser RH and Weinbrenner C: Ischemic post-conditioning reduces infarct size of the in vivo rat heart: Role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem. 339:135–147. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ and Diwan A: Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy. 8:1394–1396. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA and Roberts DD: Treatment of liver ischemia/reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery. 144:752–761. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Maxhimer JB, Shih HB, Isenberg JS, Miller TW and Roberts DD: Thrombospondin-1/CD47 blockade following ischemia-reperfusion injury is tissue protective. Plast Reconstr Surg. 124:1880–1889. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Sharifi-Sanjani M, Shoushtari AH, Quiroz M, Baust J, Sestito SF, Mosher M, Ross M, McTiernan CF, St Croix CM, Bilonick RA, et al: Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc. 3:e0006702014. View Article : Google Scholar : PubMed/NCBI

14 

Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, Yamawaki H, Demircan K, Kusachi S, Shiratori Y and Ninomiya Y: Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med. 230:621–630. 2005. View Article : Google Scholar

15 

Rogers NM, Thomson AW and Isenberg JS: Activation of parenchymal CD47 promotes renal ischemia-reperfusion injury. J Am Soc Nephrol. 23:1538–1550. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Xiao ZY, Banan B, Jia J, Manning PT, Hiebsch RR, Gunasekaran M, Upadhya GA, Frazier WA, Mohanakumar T, Lin Y and Chapman WC: CD47 blockade reduces ischemia/reperfusion injury and improves survival in a rat liver transplantation model. Liver Transpl. 21:468–477. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Lin Y, Manning PT, Jia J, Gaut JP, Xiao Z, Capoccia BJ, Chen CC, Hiebsch RR, Upadhya G, Mohanakumar T, et al: CD47 blockade reduces ischemia-reperfusion injury and improves outcomes in a rat kidney transplant model. Transplantation. 98:394–401. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Isenberg JS, Pappan LK, Romeo MJ, Abu-Asab M, Tsokos M, Wink DA, Frazier WA and Roberts DD: Blockade of thrombospondin-1-CD47 interactions prevents necrosis of full thickness skin grafts. Ann Surg. 247:180–190. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Rogers NM, Zhang ZJ, Wang JJ, Thomson AW and Isenberg JS: CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion. Kidney Int. 90:334–347. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, Tsokos M, Wink DA, Isenberg JS and Roberts DD: Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med. 1:3ra72009. View Article : Google Scholar : PubMed/NCBI

21 

Isenberg JS, Maxhimer JB, Hyodo F, Pendrak ML, Ridnour LA, DeGraff WG, Tsokos M, Wink DA and Roberts DD: Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. Am J Pathol. 173:1100–1112. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Soto-Pantoja DR, Miller TW, Pendrak ML, DeGraff WG, Sullivan C, Ridnour LA, Abu-Asab M, Wink DA, Tsokos M and Roberts DD: CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy. 8:1628–1642. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Cao X, Chen A, Yang P, Song X, Liu Y, Li Z, Wang X, Wang L and Li Y: Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Biochem Biophys Res Commun. 441:935–940. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Zhang B, Zhou M, Li C, Zhou J, Li H, Zhu D, Wang Z, Chen A and Zhao Q: MicroRNA-92a inhibition attenuates Hypoxia/Reoxygenation-induced myocardiocyte apoptosis by targeting Smad7. PLoS One. 9:e1002982014. View Article : Google Scholar : PubMed/NCBI

25 

Wang Y, Yin C, Feng L, Wang C and Sheng G: Ara-C and anti-CD47 antibody combination therapy eliminates acute monocytic leukemia THP-1 cells in vivo and in vitro. Genet Mol Res. 14:5630–5641. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Ma X, Godar RJ, Liu H and Diwan A: Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death. Autophagy. 8:297–309. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Wang HB and Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX and Yang J: RNAi-mediated down-regulation of CD47 protects against ischemia/reperfusion-induced myocardial damage via activation of eNOS in a rat model. Cell Physiol Biochem. 40:1163–1174. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Isenberg JS, Hyodo F, Pappan LK, Abu-Asab M, Tsokos M, Krishna MC, Frazier WA and Roberts DD: Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia. Arterioscler Thromb Vasc Biol. 27:2582–2588. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H and Soleimani M: Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest. 115:3451–3459. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Chen HW, Chien CT, Yu SL, Lee YT and Chen WJ: Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: Mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol. 137:771–781. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Webster KA, Discher DJ, Kaiser S, Hernandez O, Sato B and Bishopric NH: Hypoxia activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest. 104:239–252. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Lee Y and Gustafsson AB: Role of apoptosis in cardiovascular disease. Apoptosis. 14:536–548. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, Ballou LM, Selinger E, Ouyang X, Lin RZ, Zhang J and Zong WX: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA. 109:2003–2008. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, Kobayashi H, Sato F, Sato S, Ishikawa K, et al: Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy. 7:176–187. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ Jr, Rothermel BA and Hill JA: Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 117:3070–3078. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al: Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 16:3–11. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Kurian GA, Rajagopal R, Vedantham S and Rajesh M: The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxid Med Cell Longev. 2016:16564502016. View Article : Google Scholar : PubMed/NCBI

39 

Zhang W, Han Y, Meng G, Bai W, Xie L, Lu H, Shao Y, Wei L, Pan S, Zhou S, et al: Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc. 3:e0006062014. View Article : Google Scholar : PubMed/NCBI

40 

Chen C, Chen W, Nong Z, Ma Y, Qiu S and Wu G: Cardioprotective effects of combined therapy with hyperbaric oxygen and diltiazem pretreatment on myocardial ischemia-reperfusion injury in rats. Cell Physiol Biochem. 38:2015–2019. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin-1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Takagi H, Matsui Y and Sadoshima J: The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal. 9:1373–1381. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T and Sadoshima J: AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy. 3:405–407. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L and Gottlieb RA: A method to measure cardiac autophagic flux in vivo. Autophagy. 4:322–329. 2008. View Article : Google Scholar : PubMed/NCBI

45 

He C and Levine B: The Beclin 1 interactome. Curr Opin Cell Biol. 22:140–149. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Levine B and Ranganathan R: Autophagy: Snapshot of the network. Nature. 466:38–40. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K and Saftig P: Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell. 13:3355–3368. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P and Grinstein S: LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26:313–324. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA and Diwan A: Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation. 125:3170–3181. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Tanida I, Ueno T and Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D and Yahalom J: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 61:439–444. 2001.PubMed/NCBI

52 

Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS and Stephanou A: Urocortin inhibits Beclin1.mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol. 40:846–852. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B and Levine B: Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 72:8586–8596. 1998.PubMed/NCBI

54 

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A, Kondo Y, Kondo S, Arun B, Lopez-Berestein G and Ozpolat B: Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy. 4:669–679. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Maruyama R, Goto K, Takemura G, Ono K, Nagao K, Horie T, Tsujimoto A, Kanamori H, Miyata S, Ushikoshi H, et al: Morphological and biochemical characterization of basal and starvation-induced autophagy in isolated adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 295:H1599–H1607. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K and Saftig P: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 406:902–906. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, et al: Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 406:906–910. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, Almquist AK, Baffa JM, Saul JP, Ho CY, et al: Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA. 301:1253–1259. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, Y., Zhao, K., Zong, P., Fu, H., Zheng, Y., Bao, D. ... Kong, X. (2019). CD47 deficiency protects cardiomyocytes against hypoxia/reoxygenation injury by rescuing autophagic clearance. Molecular Medicine Reports, 19, 5453-5463. https://doi.org/10.3892/mmr.2019.10199
MLA
Li, Y., Zhao, K., Zong, P., Fu, H., Zheng, Y., Bao, D., Yin, Y., Chen, Q., Lu, L., Dai, Y., Hou, D., Kong, X."CD47 deficiency protects cardiomyocytes against hypoxia/reoxygenation injury by rescuing autophagic clearance". Molecular Medicine Reports 19.6 (2019): 5453-5463.
Chicago
Li, Y., Zhao, K., Zong, P., Fu, H., Zheng, Y., Bao, D., Yin, Y., Chen, Q., Lu, L., Dai, Y., Hou, D., Kong, X."CD47 deficiency protects cardiomyocytes against hypoxia/reoxygenation injury by rescuing autophagic clearance". Molecular Medicine Reports 19, no. 6 (2019): 5453-5463. https://doi.org/10.3892/mmr.2019.10199