Open Access

Identification of a long noncoding RNA signature to predict outcomes of glioblastoma

  • Authors:
    • Depei Li
    • Jie Lu
    • Hong Li
    • Songtao Qi
    • Lei Yu
  • View Affiliations

  • Published online on: April 24, 2019     https://doi.org/10.3892/mmr.2019.10184
  • Pages: 5406-5416
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long noncoding RNAs (lncRNAs) are a novel class of gene regulators involved in tumor biogenesis. Glioblastoma is the most common and malignant type of brain tumor. The function and prognostic significance of lncRNAs in glioblastoma remain unclear. In the present study, updated gene annotations were adopted to investigate lncRNA expression profiles in publicly available glioma microarray datasets from the Gene Expression Omnibus and the Repository for Molecular Brain Neoplasia Data. In a training set of 108 samples of glioblastoma, using univariate Cox regression analysis with a permutation P<0.005, four lncRNAs, including insulin‑like growth factor binding protein 7‑antisense 1 (IGFBP7‑AS1), were significantly associated with patient overall survival. These four lncRNAs were integrated as an expression‑based molecular signature to divide patients in the training set into high‑risk and low‑risk subgroups, with distinct survival rates (hazard ratio, 2.72; 95% CI, 1.71‑4.31; P<0.001). The prognostic value of the lncRNA signature was confirmed in two additional datasets comprising a total of 147 samples from patients with glioblastoma. The prognostic value of this signature was independent of age and Karnofsky performance status. This signature was also able to predict different outcomes in cases of glioblastoma associated with an isocitrate dehydrogenase 1 mutation. Further bioinformatics analyses revealed that ‘epithelial‑mesenchymal transition’ and ‘p53 pathway’ gene sets were enriched in glioblastoma samples with higher IGFBP7‑AS1 expression. Furthermore, in vitro experiments demonstrated that knockdown of IGFBP7‑AS1 inhibited the viability, migration and invasion of U87 and U251 glioma cells. In conclusion, the present study identified a lncRNA signature able to predict glioblastoma outcomes, and provided novel information regarding the role of IGFBP7‑AS1 in glioma development.

References

1 

Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2009–2013. Neuro Oncol. 18 (Suppl 5):v1–v75. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Reifenberger G, Wirsching HG, Knobbe-Thomsen CB and Weller M: Advances in the molecular genetics of gliomas-implications for classification and therapy. Nat Rev Clin Oncol. 14:434–452. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB, Kloosterhof NK, et al: Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 69:9065–9072. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Hessels D and Schalken JA: The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol. 6:255–261. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Reon BJ, Anaya J, Zhang Y, Mandell J, Purow B, Abounader R and Dutta A: Expression of lncRNAs in low-grade gliomas and glioblastoma multiforme: An in silico analysis. PLoS Med. 13:e10021922016. View Article : Google Scholar : PubMed/NCBI

11 

Zhang XQ and Leung GK: Long non-coding RNAs in glioma: Functional roles and clinical perspectives. Neurochem Int. 77:78–85. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Zhang X, Kiang KM, Zhang GP and Leung GK: Long non-coding RNAs dysregulation and function in glioblastoma stem cells. Noncoding RNA. 1:69–86. 2015.PubMed/NCBI

13 

Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA and Buetow K: Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol Cancer Res. 7:157–167. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Sun LX, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, et al: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, et al: Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 26:3015–3024. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, et al: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33:e1752005. View Article : Google Scholar : PubMed/NCBI

19 

Cheadle C, Vawter MP, Freed WJ and Becker KG: Analysis of microarray data using z score transformation. J Mol Diagn. 5:73–81. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, et al: The Ensembl genome database project. Nucleic Acids Res. 30:38–41. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Simon R, Lam A, Li MC, Ngan M, Menenzes S and Zhao Y: Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3:11–17. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D and Levy R: Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 350:1828–1837. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF, Wong TS and Leung GK: A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis. 58:123–131. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Heagerty PJ, Lumley T and Pepe MS: Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 56:337–344. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Xiao S, Wang R, Wu X, Liu W and Ma S: The long noncoding RNA TP73-AS1 interacted with miR-124 to modulate glioma growth by targeting inhibitor of apoptosis-stimulating protein of p53. DNA Cell Biol. 37:117–125. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Zhang R, Jin H and Lou F: The long non-coding RNA TP73-AS1 interacted with miR-142 to modulate brain glioma growth through HMGB1/RAGE pathway. J Cell Biochem. 119:3007–3016. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Wang JB, Liu FH, Chen JH, Ge HT, Mu LY, Bao HB and Lin ZG: Identifying survival-associated modules from the dysregulated triplet network in glioblastoma multiforme. J Cancer Res Clin Oncol. 143:661–671. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y and Liu XS: Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 20:908–913. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Lagarde J, Uszczynska-Ratajczak B, Carbonell S, Pérez-Lluch S, Abad A, Davis C, Gingeras TR, Frankish A, Harrow J, Guigo R and Johnson R: High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat Genet. 49:1731–1740. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Dang L, Yen K and Attar EC: IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 27:599–608. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Li S, Huang Y, Huang Y, Fu Y, Tang D, Kang R, Zhou R and Fan XG: The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. J Exp Clin Cancer Res. 36:512017. View Article : Google Scholar : PubMed/NCBI

35 

Yao J, Xu F, Zhang D, Yi W, Chen X, Chen G and Zhou E: TP73-AS1 promotes breast cancer cell proliferation through miR-200a-mediated TFAM inhibition. J Cell Biochem. 119:680–690. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Li W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J and Zhou Y: Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem. 292:5801–5813. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Akiel M, Guo C, Li X, Rajasekaran D, Mendoza RG, Robertson CL, Jariwala N, Yuan F, Subler MA, Windle J, et al: IGFBP7 deletion promotes hepatocellular carcinoma. Cancer Res. 77:4014–4025. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Jhuraney A, Woods NT, Wright G, Rix L, Kinose F, Kroeger JL, Remily-Wood E, Cress WD, Koomen JM, Brantley SG, et al: PAXIP1 potentiates the combination of WEE1 inhibitor AZD1775 and platinum agents in lung cancer. Mol Cancer Ther. 15:1669–1681. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, Bonilla F and de Herreros AG: A natural antisense transcript regulates Zeb2/Sip1 gene expression during snail1-induced epithelial-mesenchymal transition. Genes Dev. 22:756–769. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Suzuki K and Matsubara H: Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011:9783122011. View Article : Google Scholar : PubMed/NCBI

41 

Kahlert UD, Nikkhah G and Maciaczyk J: Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 331:131–138. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Pećina-Šlaus N, Kafka A, Varošanec AM, Marković L, Krsnik Ž, Njirić N and Mrak G: Expression patterns of Wnt signaling component, secreted frizzled-related protein 3 in astrocytoma and glioblastoma. Mol Med Rep. 13:4245–4251. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, D., Lu, J., Li, H., Qi, S., & Yu, L. (2019). Identification of a long noncoding RNA signature to predict outcomes of glioblastoma. Molecular Medicine Reports, 19, 5406-5416. https://doi.org/10.3892/mmr.2019.10184
MLA
Li, D., Lu, J., Li, H., Qi, S., Yu, L."Identification of a long noncoding RNA signature to predict outcomes of glioblastoma". Molecular Medicine Reports 19.6 (2019): 5406-5416.
Chicago
Li, D., Lu, J., Li, H., Qi, S., Yu, L."Identification of a long noncoding RNA signature to predict outcomes of glioblastoma". Molecular Medicine Reports 19, no. 6 (2019): 5406-5416. https://doi.org/10.3892/mmr.2019.10184