Open Access

Salmonella infection leads to severe intestinal inflammation and increased CD4+FoxP3+ Treg cells in streptozotocin‑induced hyperglycemic mice

  • Authors:
    • Shanlong Zhang
    • Meixiang Wang
    • Xuemei Wang
    • Helou Li
    • Hua Tang
    • Xiaojun Li
  • View Affiliations

  • Published online on: April 25, 2019     https://doi.org/10.3892/mmr.2019.10195
  • Pages: 5377-5385
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hyperglycemia promotes the growth and reproduction of bacteria, thereby increasing the probability of infection, which also causes rebound hyperglycemia. Therefore, the interactions of infection and hyperglycemia lead to the progression and deterioration of these diseases. Type 1 diabetes mellitus (T1DM) is an autoimmune disease. Studies have shown that regulatory T cells (Tregs) play a key role in maintaining islet‑specific tolerance. Treg deficiency may lead to the development of early pancreatitis and T1DM, and sufficient amounts of Tregs can restore this tolerance, thereby inhibiting the occurrence of T1DM. Moreover, different subpopulations of dendritic cells (DCs) play an important role in activating autoreactive T cells and inducing autoimmune tolerance to autoantigens, which are closely related to the functional diversity caused by different phenotypes, maturation status, and the immune microenvironment of DC subpopulations. In the present study, we used streptozotocin‑induced hyperglycemic mice to model T1DM and induced a Salmonella infection in the mouse model, leading to aggravated inflammation, which resulted in an elevated proportion of CD103+CD11b+ DCs and a significantly elevated proportion of CD4+FoxP3+ Tregs in the intestinal lamina propria. After co‑culturing CD4+ T cells and DCs, we found that CD103+CD11b+ DCs could significantly promote the proliferation of CD4+ T cells. The elevated proportions of CD4+FoxP3+ Tregs were considered to be correlated with the increased number of CD103+CD11b+ DCs.

References

1 

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 138:271–281. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hooper LV and Macpherson AJ: Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 10:159–169. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Vickery BP, Scurlock AM, Jones SM and Burk AW: Mechanisms of immune tolerance relevant to food allergy. J Allergy Clin Immunol. 127:576–586. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Steele-Mortimer O: The Salmonella-containing vacuole: Moving with the times. Curr Opin Microbiol. 11:38–45. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Ohkura N, Kitagawa Y and Sakaguchi S: Development and maintenance of regulatory T cells. Immunity. 38:414–423. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M and Tree TI: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 54:92–99. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Putnam AL, Vendrame F, Dotta F and Gottlieb PA: CD4+CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun. 24:55–62. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Zhang XX, Qiao YC, Li W, Zou X, Chen YL, Shen J, Liao QY, Zhang QJ, He L and Zhao HL: Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes. Immunol Res. 66:179–186. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Eizirik DL and Mandrup-Poulsen T: A choice of death-the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 44:2115–2133. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH and Shultz LD: B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: Analysis of a new ‘speed congenic’ stock of NOD.Ig mu null mice. J Exp Med. 184:2049–2053. 1996. View Article : Google Scholar : PubMed/NCBI

11 

Salahuddin M, Jalalpure SS and Gadge NB: Antidiabetic activity of aqueous bark extract of Cassia glauca in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 88:153–160. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Zenk SF, Jantsch J and Hensel M: Role of Salmonella enterica lipopolysaccharide in activation of dendritic cell functions and bacterial containment. J Immunol. 183:2697–2707. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Voedisch S, Koenecke C, David S, Herbrand H, Förster R, Rhen M and Pabst O: Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun. 77:3170–3180. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Bezuglova AM, Konenkova LP, Doronin BM, Buneva VN and Nevinsky GA: Affinity and catalytic heterogeneity and metal-dependence of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with systemic lupus erythematosus. J Mol Recognit. 24:960–974. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Steinman RM: Dendritic cells in vivo: A key target for a new vaccine science. Immunity. 29:319–324. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Pulendran B, Tang H and Manicassamy S: Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol. 11:647–655. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Bekiaris V, Persson EK and Agace WW: Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev. 260:86–101. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Ko HJ and Chang SY: Regulation of intestinal immune system by dendritic cells. Immune Netw. 15:1–8. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Coombes JL and Powrie F: Dendritic cells in intestinal immune regulation. Nat Rev Immunol. 8:435–446. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW and Pabst O: Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med. 206:3101–3114. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B and Agace WW: Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med. 205:2139–2149. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Boehm F, Martin M, Kesselring R, Schiechl G, Geissler EK, Schlitt HJ and Fichtner-Feigl S: Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation. BMC Gastroenterol. 12:972012. View Article : Google Scholar : PubMed/NCBI

25 

Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, et al: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol. 176:803–810. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Correction to Lancet Diabetes Endocrinol 2018; 6, . 186-96. Lancet Diabetes Endocrinol. 6:e42018.PubMed/NCBI

27 

Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F and Puccetti P: Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut. 59:595–604. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Shiokawa A, Tanabe K, Tsuji NM Sato R and Hachimura S: Hachimura, IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance. Immunol Lett. 125:7–14. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, S., Wang, M., Wang, X., Li, H., Tang, H., & Li, X. (2019). Salmonella infection leads to severe intestinal inflammation and increased CD4+FoxP3+ Treg cells in streptozotocin‑induced hyperglycemic mice. Molecular Medicine Reports, 19, 5377-5385. https://doi.org/10.3892/mmr.2019.10195
MLA
Zhang, S., Wang, M., Wang, X., Li, H., Tang, H., Li, X."Salmonella infection leads to severe intestinal inflammation and increased CD4+FoxP3+ Treg cells in streptozotocin‑induced hyperglycemic mice". Molecular Medicine Reports 19.6 (2019): 5377-5385.
Chicago
Zhang, S., Wang, M., Wang, X., Li, H., Tang, H., Li, X."Salmonella infection leads to severe intestinal inflammation and increased CD4+FoxP3+ Treg cells in streptozotocin‑induced hyperglycemic mice". Molecular Medicine Reports 19, no. 6 (2019): 5377-5385. https://doi.org/10.3892/mmr.2019.10195