Open Access

Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways

  • Authors:
    • Jianliang Pang
    • Peiyang Hu
    • Junwei Wang
    • Jinsong Jiang
    • Jifu Lai
  • View Affiliations

  • Published online on: April 30, 2019     https://doi.org/10.3892/mmr.2019.10211
  • Pages: 5291-5300
  • Copyright: © Pang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Atherosclerosis (AS) is an inflammatory disease that occurs in the arterial wall and is characterized by progressive lipid accumulation within the intima of large arteries, leading to the dysfunction of endothelial cells and further destruction of the endothelial barrier and vascular tone. Arterial intima injury accelerates the adhesion and activation of platelets at the injury site. The activation of platelets results in the secretion of growth factors, leading to the migration and proliferation of vascular smooth muscle cells (VSMCs), promoting the formation of plaque, resulting in the formation of thrombus. The present study found that vorapaxar could alleviate the inflammatory response induced by a high concentration of cholesterol stimulation and increase the release of nitric oxide (NO) via the protein kinase B (AKT) signaling pathway and regulation of the intracellular concentration of Ca2+ ([Ca2+]i). We also found that vorapaxar could reduce the damage of DNA caused by cholesterol stimulation and regulate the cell cycle via the AKT/JNK signaling pathway and its downstream molecules glycogen synthase kinase 3β (GSK‑3β) and connexin 43, maintaining the integrity of the endothelial barrier and proliferation of endothelial cells, serving a protective role in endothelial cells.

References

1 

Badimón L, Vilahur G and Padró T: Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol. 62:1161–1178. 2009.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI

2 

Mehta D and Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev. 86:279–367. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Jennings LK: Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost. 102:248–257. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Schaff M, Gachet C and Mangin PH: Anti-platelets without a bleeding risk: Novel targets and strategies. Biol Aujourdhui. 209:211–228. 2015.(In French). View Article : Google Scholar : PubMed/NCBI

5 

Alberelli MA and De Candia E: Functional role of protease activated receptors in vascular biology. Vascul Pharmacol. 62:72–81. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Gryka RJ, Buckley LF and Anderson SM: Vorapaxar: The current role and future directions of a novel protease-activated receptor antagonist for risk reduction in atherosclerotic disease. Drugs R D. 17:65–72. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Machida T, Dohgu S, Takata F, Matsumoto J, Kimura I, Koga M, Nakamoto K, Yamauchi A and Kataoka Y: Role of thrombin-PAR1-PKCθ/δ axis in brain pericytes in thrombin-induced MMP-9 production and blood-brain barrier dysfunction in vitro. Neuroscience. 350:146–157. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Suvorava T, Nagy N, Pick S, Lieven O, Rüther U, Dao VT, Fischer JW, Weber M and Kojda G: Impact of eNOS-dependent oxidative stress on endothelial function and neointima formation. Antioxid Redox Signal. 23:711–723. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Abeyrathna P and Su Y: The critical role of Akt in cardiovascular function. Vascul Pharmacol. 74:38–48. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Jin X, Xu Z, Fan R, Wang C, Ji W, Ma Y, Cai W, Zhang Y, Yang N, Zou S, et al: HO-1 alleviates cholesterol-induced oxidative stress through activation of Nrf2/ERK and inhibition of PI3K/AKT pathways in endothelial cells. Mol Med Rep. 16:3519–3527. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, et al: PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest. 123:206–214. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Pandey A, Chakraborty S and Chakraborty N: Nuclear proteome: Isolation of intact nuclei, extraction of nuclear proteins, and 2-DE analysis. Methods Mol Biol. 1696:41–55. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Shi Z, Bielecka-Dabrowa AM, Mynbaev OA and Wei S: Find the essence through the phenomena: Cardiovascular diseases and biomarkers. Dis Markers. 2018:19291062018. View Article : Google Scholar : PubMed/NCBI

15 

Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS and Gupta M: Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 276:98–108. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Liu H, Yu X, Yu S and Kou J: Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol. 29:937–946. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Yi X, Lin J, Luo H, Wang C and Liu Y: Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic stroke patients. PLoS One. 12:e01807042017. View Article : Google Scholar : PubMed/NCBI

18 

Li K, Ching D, Luk FS and Raffai RL: Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ Res. 117:e1–e11. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Solís-Martínez R, Cancino-Marentes M, Hernández-Flores G, Ortiz-Lazareno P, Mandujano-Álvarez G, Cruz-Gálvez C, Sierra-Díaz E, Rodríguez-Padilla C, Jave-Suárez LF, Aguilar-Lemarroy A and Bravo-Cuellar A: Regulation of immunophenotype modulation of monocytes-macrophages from M1 into M2 by prostate cancer cell-culture supernatant via transcription factor STAT3. Immunol Lett. 196:140–148. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Chen X, Zong C, Gao Y, Cai R, Fang L, Lu J, Liu F and Qi Y: Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells. Eur J Pharmacol. 723:339–345. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Moniruzzaman M, Ghosal I, Das D and Chakraborty SB: Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biol Res. 51:172018. View Article : Google Scholar : PubMed/NCBI

22 

Gray K and Bennett M: Role of DNA damage in atherosclerosis-bystander or participant? Biochem Pharmacol. 82:693–700. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Janssens S and Tschopp J: Signals from within: The DNA-damage-induced NF-κB response. Cell Death Differ. 13:773–784. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Maréchal A and Zou L: DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5:a0127162013. View Article : Google Scholar : PubMed/NCBI

25 

Enríquez-Cortina C, Bello-Monroy O, Rosales-Cruz P, Souza V, Miranda RU, Toledo-Pérez R, Luna-López A, Simoni-Nieves A, Hernández-Pando R, Gutiérrez-Ruiz MC, et al: Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis. Oncotarget. 8:104136–104148. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Miyamoto S: Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 21:116–130. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Sakata K, Kondo T, Mizuno N, Shoji M, Yasui H, Yamamori T, Inanami O, Yokoo H, Yoshimura N and Hattori Y: Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells. Vascul Pharmacol. 70:55–65. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Vechoropoulos M, Ish-Shalom M, Shaklai S, Sack J, Stern N and Tordjman KM: The proatherogenic effect of chronic nitric oxide synthesis inhibition in ApoE-Null mice is dependent on the presence of PPAR α. PPAR Res. 2014:1245832014. View Article : Google Scholar : PubMed/NCBI

29 

Fernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ and Sessa WC: Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. 6:446–457. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Somanath PR, Razorenova OV, Chen J and Byzova TV: Akt1 in endothelial cell and angiogenesis. Cell Cycle. 5:512–518. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A and Sessa WC: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 399:597–601. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Shin MK, Jeong KH, Choi H, Ahn HJ and Lee MH: Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line. J Dermatol Sci. 90:357–360. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Wang B, Zhao J, Yu M, Meng X, Cui X, Zhao Y, Zhu Y, Xing W and Guan Y: Disturbance of intracellular calcium homeostasis and CaMKII/CREB signaling is associated with learning and memory impairments induced by chronic aluminum exposure. Neurotox Res. 26:52–63. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Sugishita Y, Leifer DW, Agani F, Watanabe M and Fisher SA: Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Dev Biol. 273:285–296. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Park KW, Yang HM, Youn SW, Yang HJ, Chae IH, Oh BH, Lee MM, Park YB, Choi YS, Kim HS and Walsh K: Constitutively active glycogen synthase kinase-3β (GSK-3β) gene transfer sustains apoptosis, inhibits proliferation of vascular smooth muscle cells, and reduces neointima. Arterioscler Thromb Vasc Biol. 23:1364–1369. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Nakae J, Park BC and Accili D: Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J Biol Chem. 274:15982–15985. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P and Eghbali M: Phosphorylation of GSK-3β mediates intralipid-induced cardio-protection against ischemia/reperfusion injury. Anesthesiology. 115:242–253. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Forde JE and Dale TC: Glycogen synthase kinase 3: A key regulator of cellular fate. Cell Mol. Life Sci. 64:1930–1944. 2007. View Article : Google Scholar

39 

Brandenburger T, Huhn R, Galas A, Pannen BH, Keitel V, Barthel F, Bauer I and Heinen A: Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo. J Transl Med. 12:2282014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Pang, J., Hu, P., Wang, J., Jiang, J., & Lai, J. (2019). Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways. Molecular Medicine Reports, 19, 5291-5300. https://doi.org/10.3892/mmr.2019.10211
MLA
Pang, J., Hu, P., Wang, J., Jiang, J., Lai, J."Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways". Molecular Medicine Reports 19.6 (2019): 5291-5300.
Chicago
Pang, J., Hu, P., Wang, J., Jiang, J., Lai, J."Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways". Molecular Medicine Reports 19, no. 6 (2019): 5291-5300. https://doi.org/10.3892/mmr.2019.10211