Open Access

Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis

  • Authors:
    • Xuefei Li
    • Bin Li
    • Hong Jiang
  • View Affiliations

  • Published online on: April 24, 2019     https://doi.org/10.3892/mmr.2019.10190
  • Pages: 5281-5290
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Heart failure (HF) secondary to acute myocardial infarction (AMI) is a public health concern. The current study aimed to investigate differentially expressed genes (DEGs) and their possible function in HF post‑myocardial infarction. The GSE59867 dataset included microarray data from peripheral blood samples obtained from HF and non‑HF patients following AMI at 4 time points (admission, discharge, and 1 and 6 months post‑AMI). Time‑series DEGs were analyzed using R Bioconductor. Functional enrichment analysis was performed, followed by analysis of protein‑protein interactions (PPIs). A total of 108 DEGs on admission, 32 DEGs on discharge, 41 DEGs at 1 month post‑AMI and 19 DEGs at 6 months post‑AMI were identified. Among these DEGs, 4 genes were downregulated at all the 4 time points. These included fatty acid desaturase 2, leucine rich repeat neuronal protein 3, G‑protein coupled receptor 15 and adenylate kinase 5. Functional enrichment analysis revealed that these DEGs were mainly enriched in ‘inflammatory response’, ‘immune response’, ‘toll‑like receptor signaling pathway’ and ‘NF‑κβ signaling pathway’. Furthermore, PPI network analysis revealed that C‑X‑C motif chemokine ligand 8 and interleukin 1β were hub genes. The current study identified candidate DEGs and pathways that may serve important roles in the development of HF following AMI. The results obtained in the current study may guide the development of novel therapeutic agents for HF following AMI.

References

1 

Roger VL: Epidemiology of heart failure. Circ Res. 113:646–659. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP and Jacobsen SJ: Trends in heart failure incidence and survival in a community-based population. JAMA. 292:344–350. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Hoydal MA, Kirkeby-Garstad I, Karevold A, Wiseth R, Haaverstad R, Wahba A, Stølen TL, Contu R, Condorelli G, Ellingsen Ø, et al: Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure. ESC Heart Fail. 5:332–342. 2018. View Article : Google Scholar : PubMed/NCBI

4 

McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, et al: ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 33:1787–1847. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Hellermann JP, Jacobsen SJ, Gersh BJ, Rodeheffer RJ, Reeder GS and Roger VL: Heart failure after myocardial infarction: A review. Am J Med. 113:324–330. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Borghi C, Bacchelli S, Degli Esposti D and Ambrosioni E; Survival of Myocardial Infarction Long-Term Evaluation Study, : Effects of early angiotensin-converting enzyme inhibition in patients with non-ST-elevation acute anterior myocardial infarction. Am Heart J. 152:470–477. 2006. View Article : Google Scholar : PubMed/NCBI

7 

O'Connor CM, Hathaway WR, Bates ER, Leimberger JD, Sigmon KN, Kereiakes DJ, George BS, Samaha JK, Abbottsmith CW, Candela RJ, et al: Clinical characteristics and long-term outcome of patients in whom congestive heart failure develops after thrombolytic therapy for acute myocardial infarction: Development of a predictive model. Am Heart J. 133:663–673. 1997. View Article : Google Scholar : PubMed/NCBI

8 

de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, Hall C, Cannon CP and Braunwald E: The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 345:1014–1021. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Haeck JD, Verouden NJ, Kuijt WJ, Koch KT, Van Straalen JP, Fischer J, Groenink M, Bilodeau L, Tijssen JG, Krucoff MW and De Winter RJ: Comparison of usefulness of N-terminal pro-brain natriuretic peptide as an independent predictor of cardiac function among admission cardiac serum biomarkers in patients with anterior wall versus nonanterior wall ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol. 105:1065–1069. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Tousoulis D, Kampoli AM, Stefanadi E, Antoniades C, Siasos G, Papavassiliou AG and Stefanadis C: New biochemical markers in acute coronary syndromes. Curr Med Chem. 15:1288–1296. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Moe KT and Wong P: Current trends in diagnostic biomarkers of acute coronary syndrome. Ann Acad Med Singapore. 39:210–215. 2010.PubMed/NCBI

12 

Hall PA, Reis-Filho JS, Tomlinson IP and Poulsom R: An introduction to genes, genomes and disease. J Pathol. 220:109–113. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Heidecker B and Hare JM: The use of transcriptomic biomarkers for personalized medicine. Heart Fail Rev. 12:1–11. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Gurwitz D: Expression profiling: A cost-effective biomarker discovery tool for the personal genome era. Genome Med. 5:412013. View Article : Google Scholar : PubMed/NCBI

15 

Maciejak A, Kiliszek M, Michalak M, Tulacz D, Opolski G, Matlak K, Dobrzycki S, Segiet A, Gora M and Burzynska B: Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure. Genome Med. 7:262015. View Article : Google Scholar : PubMed/NCBI

16 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

18 

Sturn A, Quackenbush J and Trajanoski Z: Genesis: Cluster analysis of microarray data. Bioinformatics. 18:207–208. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

20 

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al: A human protein-protein interaction network: A resource for annotating the proteome. Cell. 122:957–968. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808–D815. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

24 

Maere S, Heymans K and Kuiper M: BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 21:3448–3449. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Li SW, Lin K, Ma P, Zhang ZL, Zhou YD, Lu SY, Zhou X and Liu SM: FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: Based on high-resolution melting analysis. PLoS One. 8:e558692013. View Article : Google Scholar : PubMed/NCBI

26 

Rupp H, Rupp TP, Alter P and Maisch B: N-3 polyunsaturated fatty acids and statins in heart failure. Lancet. 373:378–380. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Rupp H, Rupp TP, Alter P and Maisch B: Inverse shift in serum polyunsaturated and monounsaturated fatty acids is associated with adverse dilatation of the heart. Heart. 96:595–598. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Rupp H, Rupp TP, Alter P and Maisch B: Mechanisms involved in the differential reduction of omega-3 and omega-6 highly unsaturated fatty acids by structural heart disease resulting in ‘HUFA deficiency’. Can J Physiol Pharmacol. 90:55–73. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Alter P, Gluck T, Figiel JH, Koczulla AR, Vogelmeier CF and Rupp H: From heart failure to highly unsaturated fatty acid deficiency and vice versa: Bidirectional heart and liver interactions. Can J Cardiol. 32:217–225. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Anderson JS, Nettleton JA, Hundley WG, Tsai MY, Steffen LM, Lemaitre RN, Siscovick D, Lima J, Prince MR and Herrington D: Associations of plasma phospholipid omega-6 and omega-3 polyunsaturated Fatty Acid levels and MRI measures of cardiovascular structure and function: The multiethnic study of atherosclerosis. J Nutr Metab. 2011:3151342011. View Article : Google Scholar : PubMed/NCBI

31 

Hamano S, Ohira M, Isogai E, Nakada K and Nakagawara A: Identification of novel human neuronal leucine-rich repeat (hNLRR) family genes and inverse association of expression of Nbla10449/hNLRR-1 and Nbla10677/hNLRR-3 with the prognosis of primary neuroblastomas. Int J Oncol. 24:1457–1466. 2004.PubMed/NCBI

32 

Fukamachi K, Matsuoka Y, Ohno H, Hamaguchi T and Tsuda H: Neuronal leucine-rich repeat protein-3 amplifies MAPK activation by epidermal growth factor through a carboxyl-terminal region containing endocytosis motifs. J Biol Chem. 277:43549–43552. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Yokota T and Wang Y: p38 MAP kinases in the heart. Gene. 575:369–376. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zhang Q, Lu L, Liang T, Liu M, Wang ZL and Zhang PY: MAPK pathway regulated the cardiomyocyte apoptosis in mice with post-infarction heart failure. Bratisl Lek Listy. 118:339–346. 2017.PubMed/NCBI

35 

Fei AH, Wang FC, Wu ZB and Pan SM: Phosphocreatine attenuates angiotensin II-induced cardiac fibrosis in rat cardiomyocytes through modulation of MAPK and NF-κB pathway. Eur Rev Med Pharmacol Sci. 20:2726–2733. 2016.PubMed/NCBI

36 

Deng HK, Unutmaz D, KewalRamani VN and Littman DR: Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature. 388:296–300. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Nguyen LP, Pan J, Dinh TT, Hadeiba H, O'Hara E III, Ebtikar A, Hertweck A, Gökmen MR, Lord GM, Jenner RG, et al: Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 16:207–213. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Koks G, Uudelepp ML, Limbach M, Peterson P, Reimann E and Koks S: Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am J Pathol. 185:2898–2906. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Pan B, Wang X, Nishioka C, Honda G, Yokoyama A, Zeng L, Xu K and Ikezoe T: G-protein coupled receptor 15 mediates angiogenesis and cytoprotective function of thrombomodulin. Sci Rep. 7:6922017. View Article : Google Scholar : PubMed/NCBI

40 

Dzeja P and Terzic A: Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci. 10:1729–1772. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Hardie DG and Hawley SA: AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays. 23:1112–1119. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Lai Y, Hu X, Chen G, Wang X and Zhu B: Down-regulation of adenylate kinase 5 in temporal lobe epilepsy patients and rat model. J Neurol Sci. 366:20–26. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Huang S and Frangogiannis NG: Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br J Pharmacol. 175:1377–1400. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Fang L, Moore XL, Dart AM and Wang LM: Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 12:305–312. 2015.PubMed/NCBI

45 

Nakayama H and Otsu K: Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol Metab. 24:546–553. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L and Aukrust P: Systemic inflammation in heart failure-the whys and wherefores. Heart Fail Rev. 11:83–92. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Levine B, Kalman J, Mayer L, Fillit HM and Packer M: Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 323:236–241. 1990. View Article : Google Scholar : PubMed/NCBI

48 

Pye M, Rae AP and Cobbe SM: Study of serum C-reactive protein concentration in cardiac failure. Br Heart J. 63:228–230. 1990. View Article : Google Scholar : PubMed/NCBI

49 

Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW and LeJemtel TH: Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 28:964–971. 1996. View Article : Google Scholar : PubMed/NCBI

50 

Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, Straino S, Biondi-Zoccai GG, Houser JE, Qureshi IZ, Ownby ED, et al: Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 117:2670–2683. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Toldo S, Mezzaroma E, Van Tassell BW, Farkas D, Marchetti C, Voelkel NF and Abbate A: Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol. 98:734–745. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C and Mann DL: Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 99:3224–3226. 1999. View Article : Google Scholar : PubMed/NCBI

53 

Frieler RA and Mortensen RM: Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 131:1019–1030. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Nahrendorf M and Swirski FK: Innate immune cells in ischaemic heart disease: Does myocardial infarction beget myocardial infarction? Eur Heart J. 37:868–872. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Frangogiannis NG: The immune system and cardiac repair. Pharmacol Res. 58:88–111. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Frangogiannis NG: The immune system and the remodeling infarcted heart: Cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol. 63:185–195. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Gullestad L, Aass H, Fjeld JG, Wikeby L, Andreassen AK, Ihlen H, Simonsen S, Kjekshus J, Nitter-Hauge S, Ueland T, et al: Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation. 103:220–225. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, et al: Interferon regulatory factor 1 is required for cardiac remodeling in response to pressure overload. Hypertension. 64:77–86. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Jiang DS, Wei X, Zhang XF, Liu Y, Zhang Y, Chen K, Gao L, Zhou H, Zhu XH, Liu PP, et al: IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat Commun. 5:33032014. View Article : Google Scholar : PubMed/NCBI

60 

Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y and Yi W: The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 7:e22342016. View Article : Google Scholar : PubMed/NCBI

61 

Liu L, Wang Y, Cao ZY, Wang MM, Liu XM, Gao T, Hu QK, Yuan WJ and Lin L: Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med. 19:2728–2740. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Mann DL, Topkara VK, Evans S and Barger PM: Innate immunity in the adult mammalian heart: For whom the cell tolls. Trans Am Clin Climatol Assoc. 121:34–51. 2010.PubMed/NCBI

63 

de Winter RJ, Manten A, de Jong YP, Adams R, van Deventer SJ and Lie KI: Interleukin 8 released after acute myocardial infarction is mainly bound to erythrocytes. Heart. 78:598–602. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Nymo SH, Hulthe J, Ueland T, McMurray J, Wikstrand J, Askevold ET, Yndestad A, Gullestad L and Aukrust P: Inflammatory cytokines in chronic heart failure: Interleukin-8 is associated with adverse outcome. Results from CORONA. Eur J Heart Fail. 16:68–75. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Husebye T, Eritsland J, Arnesen H, Bjørnerheim R, Mangschau A, Seljeflot I and Andersen GØ: Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS One. 9:e1123592014. View Article : Google Scholar : PubMed/NCBI

66 

Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N and Frangogiannis NG: IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol. 191:4838–4848. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Orn S, Ueland T, Manhenke C, Sandanger Ø, Godang K, Yndestad A, Mollnes TE, Dickstein K and Aukrust P: Increased interleukin-1β levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Intern Med. 272:267–276. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, X., Li, B., & Jiang, H. (2019). Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis. Molecular Medicine Reports, 19, 5281-5290. https://doi.org/10.3892/mmr.2019.10190
MLA
Li, X., Li, B., Jiang, H."Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis". Molecular Medicine Reports 19.6 (2019): 5281-5290.
Chicago
Li, X., Li, B., Jiang, H."Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis". Molecular Medicine Reports 19, no. 6 (2019): 5281-5290. https://doi.org/10.3892/mmr.2019.10190