Open Access

Screening of underlying genetic biomarkers for ankylosing spondylitis

  • Authors:
    • Xutao Fan
    • Bao Qi
    • Longfei Ma
    • Fengyu Ma
  • View Affiliations

  • Published online on: April 24, 2019     https://doi.org/10.3892/mmr.2019.10188
  • Pages: 5263-5274
  • Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Genetic biomarkers for the diagnosis of ankylosing spondylitis (AS) remain unreported except for human leukocyte antigen B27 (HLA‑B27). Therefore, the aim of the present study was to screen the differentially expressed genes (DEGs), and those that also possess differential single nucleotide polymorphism (SNP) loci in the whole blood of AS patients compared with healthy controls by integrating two mRNA expression profiles (GSE73754 and GSE25101) and SNP microarray data (GSE39428) collected from the Gene Expression Omnibus (GEO). Using the t‑test, 1,056 and 1,073 DEGs were identified in the GSE73754 and GSE25101 datasets, respectively. Among them, 234 DEGs were found to be shared in both datasets, which were subsequently overlapped with 122 differential SNPs of genes in the GSE39428 dataset, resulting in identification of two common genes [eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1) and serpin family A member 1 (SERPINA1)]. Their expression levels were significantly upregulated and the average expression log R ratios of SNP sites in these genes were significantly higher in AS patients than those in controls. Function enrichment analysis revealed that EEF1E1 was involved in AS by influencing the aminoacyl‑tRNA biosynthesis, while SERPINA1 may be associated with AS by participating in platelet degranulation. However, only the genotype and allele frequencies of SNPs (rs7763907 and rs7751386) in EEF1E1 between AS and controls were significantly different between AS and the controls, but not SERPINA1. These findings suggest that EEF1E1 may be an underlying genetic biomarker for the diagnosis of AS.

References

1 

Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD and Macfarlane GJ: Global prevalence of ankylosing spondylitis. Rheumatology (Oxford). 53:650–657. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Healey EL, Haywood KL, Jordan KP, Garratt AM and Packham JC: Patients with well-established ankylosing spondylitis show limited deterioration in a ten-year prospective cohort study. Clin Rheumatol. 32:67–72. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Chen B, Li J, He C, Li D, Tong W, Zou Y and Xu W: Role of HLA-B27 in the pathogenesis of ankylosing spondylitis. Mol Med Rep. 15:1943–1951. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Fernández-Sueiro JL, Alonso C, Blanco FJ, Rodríguez-Gómez M, Galdo F and González-Gay MA: Prevalence of HLA-B27 and subtypes of HLA-B27 associated with ankylosing spondylitis in Galicia, Spain. Clin Exp Rheumatol. 22:465–468. 2004.PubMed/NCBI

5 

Cauli A, Dessole G, Fiorillo MT, Vacca A, Mameli A, Bitti P, Passiu G, Sorrentino R and Mathieu A: Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: A possible further susceptibility factor for the development of disease. Rheumatology (Oxford) 41(12). 1375–1379. 2002. View Article : Google Scholar

6 

Yang T, Duan Z, Wu S, Liu S, Zeng Z, Li G, Wang S, Fan D, Ye D, Xu S, et al: Association of HLA-B27 genetic polymorphisms with ankylosing spondylitis susceptibility worldwide: A meta-analysis. Mod Rheumatol. 24:150–161. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Lin H and Gong YZ: Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: A meta-analysis. Rheumatol Int. 37:1267–1280. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Kim TJ, Na KS, Lee HJ, Lee B and Kim TH: HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. Clin Exp Rheumatol. 27:574–579. 2009.PubMed/NCBI

9 

Zhang L, Zhang YJ, Chen J, Huang XL, Fang GS, Yang LJ, Duan Y and Wang J: The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review. Microb Pathog. 117:49–54. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Brown MA, Kennedy LG, Macgregor AJ, Darke C, Duncan E, Shatford JL, Taylor A, Calin A and Wordsworth P: Susceptibility to ankylosing spondylitis in twins: The role of genes, HLA, and the environment. Arthritis Rheum. 40:1823–1828. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Brophy S, Hickey S, Menon A, Taylor G, Bradbury L, Hamersma J and Calin A: Concordance of disease severity among family members with ankylosing spondylitis? J Rheumatol. 31:1775–1778. 2004.PubMed/NCBI

12 

Azevedo VF, Faria-Neto JR, Stinghen A, Lorencetti PG, Miller WP, Gonçalves BP, Szyhta CC and Pecoits-Filho R: IL-8 but not other biomarkers of endothelial damage is associated with disease activity in patients with ankylosing spondylitis without treatment with anti-TNF agents. Rheumatol Int. 33:1779–1783. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Gonza-Lezlopez L, Fajardo-Robledo NS, Saldaña-Cruz AM, Moreno-Sandoval IV, Bonilla-Lara D, Zavaleta-Muñiz S, Nava-Zavala AH, Hernandez-Cuervo P, Rocha-Muñoz A, Rodriguez-Jimenez NA, et al: Association of adipokines, interleukin-6, and tumor necrosis factor-α concentrations with clinical characteristics and presence of spinal syndesmophytes in patients with ankylosing spondylitis: A cross-sectional study. J Int Med Res. 45:1024–1035. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Sundström B, Ljung L and Wållberg-Jonsson S: Exercise habits and C-reactive protein may predict development of spinal immobility in patients with ankylosing spondylitis. Clin Rheumatol. 37:2881–2885. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Sohn DH, Jeong H, Roh JS, Lee HN, Kim E, Koh JH and Lee SG: Serum CCL11 level is associated with radiographic spinal damage in patients with ankylosing spondylitis. Rheumatol Int. 38:1455–1464. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Ruan WF, Xie JT, Jin Q, Wang WD and Ping AS: The diagnostic and prognostic role of interleukin 12B and interleukin 6R gene polymorphism in patients with ankylosing spondylitis. J Clin Rheumatol. 24:18–24. 2018.PubMed/NCBI

17 

Ma HJ, Yin QF, Wu Y and Guo MH: TNF-α-308 polymorphism determines clinical manifestations and therapeutic response of ankylosing spondylitis in Han chinese. Med Clin (Barc). 149:517–522. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Gracey E, Yao Y, Green B, Qaiyum Z, Baglaenko Y, Lin A, Anton A, Ayearst R, Yip P and Inman RD: Sexual dimorphism in the Th17 signature of ankylosing spondylitis. Arthritis Rheumatol. 68:679–689. 2015. View Article : Google Scholar

19 

Pimentel-Santos FM, Ligeiro D, Matos M, Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz M, et al: Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther. 13:R572011. View Article : Google Scholar : PubMed/NCBI

20 

Chang X, Xu B, Wang L, Wang Y, Wang Y and Yan S: Investigating a pathogenic role for TXNDC5 in tumors. Int J Oncol. 43:1871–1884. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Chang X, Zheng Y, Yang Q, Wang L, Pan J, Xia Y, Yan X and Han J: Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res Ther. 14:R1762012. View Article : Google Scholar : PubMed/NCBI

22 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

23 

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H and Bucan M: PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17:1665–1674. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Benjamini Y, Drai D, Elmer G, Kafkafi N and Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 125:279–284. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database Issue). D447–D452. 2015. View Article : Google Scholar

26 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Tang Y, Li M, Wang J, Pan Y and Wu FX: CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 127:67–72. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

29 

Ku MJ and Lee SY: Contributions of aminoacyl-tRNA synthetase-interacting multifunctional protein-3 to mammalian translation initiation. Amino Acids. 44:1241–1245. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ and Kim S: AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol. 423:475–481. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Hassan MK, Kumar D, Naik M and Dixit M: The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One. 13:e01913772018. View Article : Google Scholar : PubMed/NCBI

32 

Yu X, Zheng H, Chan MT and Wu WK: HULC: An oncogenic long non-coding RNA in human cancer. J Cell Mol Med. 21:410–417. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Kim SS, Hur SY, Kim YR, Yoo NJ and Lee SH: Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori. 97:380–385. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Park BJ, Oh YS, Park SY, Choi SJ, Rudolph C, Schlegelberger B and Kim S: AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res. 66:6913–6918. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Han JM, Park BJ, Sang GP, Oh YS, Choi SJ, Sang WL, Hwang SK, Chang SH, Cho MH and Kim S: AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA. 105:11206–11211. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Gurung PM, Veerakumarasivam A, Williamson M, Counsell N, Douglas J, Tan WS, Feber A, Crabb SJ, Short SC, Freeman A, et al: Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer. Int J Cancer. 136:709–720. 2015.PubMed/NCBI

37 

Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, Kim HS, Lee JY, Kim S, Seo KW and Kang KS: miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age (Dordr). 36:97242014. View Article : Google Scholar : PubMed/NCBI

38 

Abou-Shousha SA, Salah E and Wagdy E: Study of P53 in peripheral blood and synovial mononuclear cells of rheumatoid arthritis and osteoarthritis patients and its relation to the degree of disease activity. Egypt J Immunol. 12:61–70. 2005.PubMed/NCBI

39 

Chou CT, Yang JS and Lee MR: Apoptosis in rheumatoid arthritis-expression of Fas, Fas-L, p53, and Bcl-2 in rheumatoid synovial tissues. J Pathol. 193:110–116. 2015. View Article : Google Scholar

40 

Liang D, Halpert MM, Konduri V and Decker WK: Stepping out of the cytosol: AIMp1/p43 potentiates the link between innate and adaptive immunity. Int Rev Immunol. 34:367–381. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Choi JW, Kim DG, Park MC, Um JY, Han JM, Park SG, Choi EC and Kim S: AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J Cell Sci. 122:2710–2715. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Hong SH, Cho JG, Yoon KJ, Lim DS, Kim CH, Lee SW and Park SG: The antibody atliximab attenuates collagen-induced arthritis by neutralizing AIMP1, an inflammatory cytokine that enhances osteoclastogenesis. Biomaterials. 44:45–54. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Liu J, Zhu M, Chen W, Xie K, Shen W, Yuan J, Cheng Y, Geng L, Wang Y, Jin G, et al: Genetic variants in multisynthetase complex genes are associated with DNA damage levels in chinese populations. Mutat Res. 786:8–13. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Ozgocmen S, Godekmerdan A and Ozkurt-Zengin F: Acute-phase response, clinical measures and disease activity in ankylosing spondylitis. Joint Bone Spine. 74:249–253. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Janciauskiene S, Moraga F and Lindgren S: C-terminal fragment of alpha1-antitrypsin activates human monocytes to a pro-inflammatory state through interactions with the CD36 scavenger receptor and LDL receptor. Atherosclerosis. 158:41–51. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE and Adachi R: Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica. 103:1235–1244. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Sun S, Fang K, Zhao Y, Yan X and Chang X: Increased expression of alpha 1-anti-trypsin in the synovial tissues of patients with ankylosing spondylitis. Clin Exp Rheumatol. 30:39–44. 2012.PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fan, X., Qi, B., Ma, L., & Ma, F. (2019). Screening of underlying genetic biomarkers for ankylosing spondylitis. Molecular Medicine Reports, 19, 5263-5274. https://doi.org/10.3892/mmr.2019.10188
MLA
Fan, X., Qi, B., Ma, L., Ma, F."Screening of underlying genetic biomarkers for ankylosing spondylitis". Molecular Medicine Reports 19.6 (2019): 5263-5274.
Chicago
Fan, X., Qi, B., Ma, L., Ma, F."Screening of underlying genetic biomarkers for ankylosing spondylitis". Molecular Medicine Reports 19, no. 6 (2019): 5263-5274. https://doi.org/10.3892/mmr.2019.10188